Name of the Faculty	:Ms.M.Tamilpriya &Ms.I. Narchonia (II Semester)
Department	: PG Department of Chemistry
Programme	: B.Sc.,Chemistry
Programme Code	: USC
Name of the Paper	: Volumetric Analysis
Lecture Hours / Practical Hours	: 3Hrs / Week / Practical Hours

Course Objectives	Course Outcomes	Practical Methodology
		• Students has to be in time for
		the laboratory
		• Students are not allowed into
		the lab without prepared
		Observation Note.
		• A student has to complete the
		practical and calculations at the
		stipulated time give to them.
		• Students have to receive the
		signature in the observation
		note on the same day or on or
		before entering the next
		practical class.

C.PLAN OF THE WORK

Unit / Modules	Topic to be covered	Proposed	Lectur	Practica	Remark
		date	e Hours	I Hours	S
Unit I	Volumetric Analysis – Basic	28.09.2021		3Hrs	
Content- 6Hrs, Assessment - 3	Concepts	to			
Hrs		13.10.2021			
Total - 6 Hrs	Volumetric Analysis -			3Hrs	
	Concentrations Units				
Unit II	Estimation of Oxalic Acid	08.11.2021		3Hrs	
Content- 6Hrs, Assessment -3	Estimation of Hydrochloric acid	to		3Hrs	
Hrs	Estimation of Sodium	01.12.2021	-		-
Total - 6 Hrs	Carbonate				
	Estimation of Ferrous Sulphate				
Unit III	Estimation of Calcium	21.02.2022		3Hrs	
Content- 6Hrs, Assessment -3	Estimation of Ferric ion –	to		3Hrs	
Hrs	Internal Indicator	11.03.2022	-		
Total - 6 Hrs	Estimation of Ferric ion-				
	External Indcator				
Unit IV	Estimation of Potassium	21.03.2022		3hrs	
Content- 6Hrs, Assessment -3	Permangante	to		3hrs	
Hrs	Estimation of Copper	06.04.2022			
Total - 6 Hrs	Estimation of Magnesium				
Unit V	Estimation of Calcium- EDTA	18.04.2022		3hrs	
Content- 6Hrs, Assessment - 3	Estimation of Total hardness	to		3hrs	
Hrs	Estimation of Saponification	05.05.2022			
Total - 6 Hrs	value of an oil				

D. ACTIVITIES

Activities Name	Details
Repetition Class	
Observation Correction	06.05.2022 to 10.05.2022
Record Correction	
Mid Semester	
Model Practical	

(

R. Dom

Principal A.D.M. College For Women Autonemous, Nagapattinam.

TEACHING PLAN

A. GENERAL INFORMATION

Name of the Faculty	: Miss R.MAHESWARI
Department	: PG Department of Chemistry
Programme	: B.Sc., Chemistry
Programme Code	: USC
Name of the Paper	: General Chemistry -II
Lecture Hours / Practical Hours	: 5 Hrs / Week/ Lecture Hours

Course Objectives	Course Outcomes	Teaching Methodology
• To understand the	• To understand about the	Chalk and Talk
principles of bonding and	properties of atoms,	Power Point
theories of chemical	characteristics, effect of	• 3. e - Module
bonding.	radiations and the	
• To understand the	significance of wave	
chemistry of S-block	functions.	
elements and metallurgy of	• To learn the mechanism of	
zero group elements.	Nucleophillic substitution	
• To understand the	and Elimination reactions	
aromatic character of		
benzene type molecules		
and to learn the reaction		
mechanisms involved in		
haloalkanes and		
halobenzenes.		

PLAN OF THE WORK

Unit/ Modules	Topic to be covered	Proposed date	Lecture Hours	Practical Hours	Remarks
Unit I	CHEMICAL BONDING	21.2.202			
Content- 13	Ionic bond – formation, variable	2 to			
Hrs, Assessment	electrovalency – Lattice energy, Born –	11.3.202			
-2 Hrs	Haber Cycle. Covalent bond - formation,	2	4hrs		
Total -	variable covalency, maximum covalency,		4hrs		
15Hrs	covalent character in ionic bond – Fajans				
	Rule. Polarisation – partial ionic character		_		
	of a covalent bond.VB theory, MO theory -		3hrs		
	Basic principles of bonding and		2hrs		
	antibonding orbitals, applications of MOT				
	to H_2 He ₂ , N_2 & O_2 – molecular orbital				
	sequence, comparison of VB & MO				
	Theories. Hybridisation – Formation of				
	BeCl ₂ & BCl ₃ . VSEPR theory of simple				
	inorganic molecules – BeCl ₂ , SiCl ₄ , PCl ₅ , SF ₆ ,				
	IF ₇ , XeF ₆ , BF ₃ & H ₂ O. Hydrogen bonding –				
	Intermolecular & Intramolecular H ₂ –				
	bonding and consequences.				
Unit II	CHEMISTRY OF s-BLOCK & amp; ZERO	12.3.202			
Content- 13	GROUP ELEMENTS AND	2 to	4hrs		
Assessment	METALLURGY	29.3.202	4hrs		
-2 Hrs	General characteristics of s-block elements	2			
Total -	comparative study of elements alkali		3hrs		
15Hrs	metals and theirhydroxides, oxides and		2hrs		
	halides, alkaline earth metals and their				
	oxides,arbonates and sulphates. Diagonal				
	relationship of Li & Mg, Be & Al,				
	chemistry of NaOH, KI				
	&Mg(NH4)PO4. Metallurgy				
	:Occurrence of metals - concentration of				
	ores – froth floatation, magnetic separation,				
	calcination, roasting, smelting, flux,				

	aluminothermic process, purification of			
	metals – electrolysis, zone refining, van			
	Arkel de- Boer process. Zero group			
	elements - position in the periodic table,			
	occurrence, isolation, applications,			
	compounds of Xe – XeF 6			
** ** ***		20.2.202	41	
Unit III Content- 13	CHEMISTRY OF BENZENE AND	30.3.202	4hrs	
Hrs,	BENZENUID COMPOUNDS	2 to	4nrs	
Assessment	Aromaticity – Huckle's rule - structure of	12.4.202	01	
-2 Hrs Total -	benzene – Benzene-preparation, chemical	Ζ	3hrs	
15Hrs	properties and uses. Aromatic electrophilic		Zhrs	
131115	substitution reactions and mechanism –			
	Orientation and reactivity in substituted			
	benzenes. Polynuclear aromatic			
	hydrocarbons – Nomenclature,			
	Naphthalene from coal tar and petroleum –			
	Laboratory preparation, Structure of			
	Naphthalene, Aromatic character, Physical			
	properties, Chemical properties, Uses.			
	Mechanism of Aromatic electrophilic			
	substitution – Theory of orientation and			
	reactivity. Anthracene, Phenanthrene from			
	coal tar and petroleum, Laboratory			
	preparation, Molecular Orbital structures,			
	Aromatic Characters, Physical Properties,			
	Chemical properties and uses. Preparation			
	of biphenyls, Physical and Chemical			
	properties and uses.			
Unit IV	ALKYL AND ARYL HALOGENS	13.4.202		
Hrs.	Nomenclature of haloalkanes – structure -	2 to		
Assessment	general preparations of haloalkanes -	9.5.2022		
-2 Hrs	physical and chemical properties and uses.			
l'otal -	Nucleophilic aliphatic substitution reaction			
15Hrs	mechanisms (S N 1 and S N 2) –			

	Stereochemical aspects. Halobenzenes:			
Unit V	ATOMIC STRUCTURE AND BASIC	10.5.202		
Unit V Content- 13 Hrs, Assessment -2 Hrs Total - 15Hrs	ATOMIC STRUCTURE AND BASIC QUANTUM MECHANICS Rutherford's and Bohr's model an atom- Bohr's theory and origin of hydrogen spectrum. Sommerfield's extension of Bohr's theory.Electromagnetic radiation- definitions for, v and velocity.Dualism of light -Particle nature of radiation- black body radiation and Planck's quantum theory,photoelectric effect and Compton effect of matter.De Broglie hypothesis and Davisson and Germer experiment. Heisenberg's uncertainty principle.	10.5.202 2 to 23.5.202 2	4hrs 4hrs 3hrs 2hrs	
	Schrodinger wave equation (Derivation			
	not needed). Physical significance of and			
	Ψ ² .			

D.ACTIVITIES

Activities Name	Details
Test	Monthly Test- Unit-I (August)
	Monthly Test – Unit – II (September)
	CIA / Mid Semester – Unit-I ,II& III (first ½ portion)- 2 ½
	Unit(October)
	CIA / Model Examination -Unit-III(Second 1/2 Unit) , Unit
	IV & Unit-V- 2 ½ Units (November)
	Assignment I –Unit –I and Unit –II (September)
Assignment	Assignment II– Unit –III and Unit – IV (October)
	Two Mark Quiz Test - Unit I – Unit – V (October)
Quiz	Unit –V (October)
	Monthly once
Seminar	
Tutorial Ward Meeting	

(

R. Dom

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

Name of the Faculty	: Dr.J.BHUVANA & Ms.N.P.RUDRA SHOWDRI
Department	: PG Department of Chemistry
Programme	: B.Sc., Chemistry
Programme Code	: USC
Name of the Paper	: Semi micro Inorganic Qualitative Analysis
Lecture Hours / Practical Hours	: 2 Hrs / Week / Practical Hours

Course Objectives	Course Outcomes	Practical Methodology
Course Objectives • To learn the techniques of semimicro qualitative analysis of Inorganic Salt mixtures. • To become familiar with elimination of interfering acid	 Course Outcomes On completion of the course the learner will be able. Familiarize the test involving identification of Cations and Anions. To know the techniques for elimination of acid radicals. 	 Practical Methodology Students has to be in time for the laboratory Students are not allowed into the lab without prepared Observation Note. A student has to complete the practical and calculations at
radicals		 the stipulated time give to them. Students have to receive the signature in the observation note on the same day or on or before entering the next

C. PLAN OF THE WORK

Topic to be covered	Proposed	Lecture	Practical	Remarks
	date	Hours	Hours	
Analysis - IV	25.02.22		2 Hrs	
Analysis - IV	07.03.22		2 Hrs	
Analysis - IV	15.03.22		2 Hrs	
Analysis - V	31.03.22		2 Hrs	
	Analysis - V	28.04.22		2 Hrs

D. ACTIVITIES

Activities Name	Details
Repetition Class	
Observation Correction	04.05.2022 to 11.05.2022
Record Correction	
Mid Semester	
Model Practical	

"

R. Dom

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

Name of the Faculty	:Dr.J.Bhuvana & Ms.M.Tamil Priya
Department	:PG Department of Chemistry
Programme	:B.Sc., Chemistry
Programme Code	: USC
Name of the Paper	: General Chemistry - IV
Lecture Hours / Practical Hours	: 5 Hrs / Week / Lecture Hours.

Course Objectives	Course Outcomes	Teaching Methodology
• To learn about the compounds of	• On completion of the course	Chalk and Talk
d-and f-block elements.	the learner will be able	• Power point.
• To study about preparation,	• To learn about the	• e- Module
properties and uses of	compounds of d and f-block	
organmetallic compounds.	elements.	
• To know the chemical processes	• To acquire the Knowledge of	
involved in the preparation,	preparation, properties and	
chemical conversion and	uses of Organometallic	
application of alcohol, phenol and	compounds.	
ethers.	• To know the chemical	
• To learn the thermodynamic	processes involved in the	
principle and thermochemistry	preparation of alcohols and	
aspects.	ethers.	
• To study about rate of chemical	• To learn the thermodynamic	
reaction and theories of reaction	principles and	
rates.	thermochemistry aspects.	
	• To gain knowledge about the	
	rate of chemical reaction and	
	its theory.	

C. PLAN OF THE WORK

Unit /	Topic to be covered	Propose	Lecture	Practica	Remarks
Modules		d date	Hours	l Hours	
Unit I	General characteristics of d-block	24.02.22	2 Hrs		
Hrs.	elements, comparative study of zinc	to 09.03.22			
Assessment -3	group elements. Extraction of Mo and Pt				
Hrs Total - 15 Hrs	- Alloys of copper, amalgams and		2 Hrs		
	galvanization. Evidences for the				
	existence of Hg ²⁺ ions General			-	
	characteristics of f-block elements –				
	Lanthanides Electronic configuration –				
	oxidation states – ionic radii, lanthanide		2 Hrs		-
	contraction. Colour and magnetic				
	properties. Actinides Sources of		2 Hrs		
	actinides- preparation of transuranic				
	elements-electronic configuration-		3Hrs		
	oxidation states-ionic radii-colour of				
	ions – comparison with lanthanides.		2 Hrs		
	Extraction of thorium from monazite		21115		
	sand. Production and uses of plutonium.				
Unit II	Introduction–Preparation of organo	10.03.22	2 Hrs		
Lontent- 12 Hrs,	magnesium compounds-physical and	to 25.03.22			
Assessment -3	chemical properties – uses. Organo zinc		2 Hrs		
Total - 15 Hrs	compounds, Organo lead – general				
	reparation, properties and uses. Organo		2 Hrs		
	lithium, Organo copper compound		2 Hrs		
	Preparation, properties and uses. Organo				
	phosphorous and organo boron		3Hrs		
	compounds–Preparation, properties and		2 Hrs	-	-
	uses.				
Unit III	Nomenclature – Individual source of	28.03.22	2 Hrs		
Hrs,	hydration of alkenes, oxymercuration,	13.04.22			
Assessment -3	hydroboration, Grignard addition,				
Hrs	reduction Physical, chemical properties		2 Hrs		
10tai – 15 Hrs	and uses- Glycols from dinydroxylation, reduction, substitution reactions and		_		
	glycerols and their uses.				

	Preparation of Phenols including di- and			-	-
	trihydroxy phenols – Physical and		2.11		
	chemical properties-uses-Aromatic		2 Hrs		
	electrophilic substitution mechanism-		2 Hrs		
	theory of orientation and reactivity.				
	Preparation of ethers: dehydration of		2Hrs		
	alcohols, Williamsons synthesis – silyl		51115		
	ether, epoxide from per acids – Sharpless				
	asymmetric epoxidation - reactions of		2 Hrs		
	epoxides -uses Introduction to crown				
	ethers–structures –applications.				
Unit IV	Definitions – System and Surround –	27.04.22	2 Hrs		
Content- 12 Hrs	isolated, closed and open system – state	to 10 05 22			
Assessment -3	of the system- intensive and extensive	10.00.22	2 Hrs		
Hrs Total - 15 Hrs	variables. Thermodynamic processes –				
	reversible and irreversible, isothermal				
	and adiabatic processes- state and path		2 Hrs		
	functions. Work of expansion at		2 1115		
	constant pressure and at constant				
	volume, First law of thermodynamics –		2 Hrs		
	statement-definition of internal energy				
	(E), enthalpy (H) and heat capacity.			-	-
	Relationship between Cp and Cv.		3Hrs		
	Calculation of w, q, dE and dH for				
	expansion of ideal and real gases under				
	isothermal and adiabatic conditions of				
	reversible and irreversible processes.		2 Hrs		
	Thermo chemistry – relationship				
	between enthalpy of reaction at constant				
	volume(qv) and at constant pressure				
	(qp) – temperature dependence of heat				
	of reaction Kirchoff's equation – bond				
	energy and its calculation from thermo				
	chemical data-integral and differential				
	heats of solutions and dilution.				

Unit V	Rate of reaction -rate equation, order	11.05.22	2 Hrs		
Content- 12 Hrs.	and molecularity of reaction. Rate laws	to 23.05.22			
Assessment -3	– rate constants–derivation of first	20100122			
Hrs Total - 15 Hrs	order rate constant and characteristics		2 Hrs		
	of zero order,first order and second				
	order reaction – derivations of time for		2 Hrs	-	-
	half change $(t_1/2)$ with examples.				
	Methods of determination of order of-		2 Hrs		
	Lindemann's theory of unimolecular		3Hrs		
	reaction. Theory of absolute reaction				
	rate – derivation of rate constant for a				
	bimolecular reaction – significance of		2 Hrs		
	entropy and free energy of activation.		2 1110		
	Comparison of collision theory and				
	Absolute Reaction Rate Theory (ARRT).				

D. ACTIVITIES

Activities Name	Details
Test	Monthly Test- Unit-I (March)
	Monthly Test – Unit – II (April)
	CIA / Mid Semester – Unit-I ,II& III (first ½ portion)- 2 ½ Unit(April)
	CIA / Model Examination -Unit-III(Second 1/2 Unit) , Unit IV & Unit-V-
	2 ½ Units (May)
Assignment	Assignment I –Unit –I and Unit –II (April)
	Assignment II– Unit –III and Unit – IV (May)
Quiz	Two Mark Quiz Test - Unit I – Unit – V (May)
Seminar	Unit –V (May)
Tutorial Ward	Monthly once
Meeting	

¢

R. Dom 2

Name of the Faculty :	M.Sivagamasundari
Department	: PG Department of Chemistry
Programme	: B.Sc Chemistry
Programme Code	: USC
Name of the Paper	: Pharmaceutical Chemistry
Lecture Hours / Practical Hours	:90 Hrs

B. ABOUT THE COURSE

Course Objectives	Course Outcomes	Teaching Methodology	
• To understand the various	• To know the	Chalk and Talk	
theories of coordination	terminology in	• Power point.	
chemistry	Pharmaceutical	• e- Module	
To study the natural products and chemistry.			
polymers	• To understand the assay		
• To learn about chromatography	of drugs, administration		
	ofdrugs.		

C. PLAN OF THE WORK

Unit /	Topic to be covered	Proposed	Lecture	Practical	Remarks
Modules		date	Hours	Hours	
Unit I	INTRODUCTION		1 hr		
Content- 4 Hrs,	Common diseases- nfective				
Assessment 2	diseases-insect-borne,and ater-	07.02.2022	1 hr		
- Hrs	borne ereditarydiseases.	to			
Total – 6 Hrs	Terminologydrug, pharmacology,	03.03.2022	1hr		
	harmacognosy, pharmacodynamics,,				
	pharmacokinetics, ntimetabolic.				
	Absorption of drugs-routes of		1hr		
	administration of drugs , factors			-	-
	affecting absorption–Assay of				
	drugs –chemical, biological,				
	immunological assays.				

Unit II	DRUGS 1.Various sources of		1 hr	
Content- 4	drugs, pharmacologically active			
Hrs, Assessment 2	constituents in plants.		1 hr	
- Hrs	2. Indian medicinal plants – tulsi			
Total – 6 Hrs	,neem ,keezhanelli– their	05.03.2022	1hr	
	importance. 3.Classification of	to		
	drugs-biological chemical-	08.04.2022		
	mechanism of drug action-action		1hr	
	at cellular and extra cellular			
	sites.			
Unit III	CHEMOTHERAPY 1.Designation		1 hr	
Content- 4	of drugs based on physiological			
Hrs, Assessment 2	action , definition and two	10.04.2022	1 hr	
- Hrs	examples each of Anesthetics	to		
Total – 6 Hrs	General IV and local – Analgesics –	25.04.2022	1hr	
	Narcotic and synthetic analgesics			
	2.Antipyretic and anti			
	inflammatory agents – Antibiotics		1hr	
	– penicillin , streptomycin,			
	chloramphenicol, tetracyclines –			
	Antivirals . 3.AIDS – symptoms ,.			
Unit IV	COMMON BODY	27.04.2022	1 hr	
Content- 4	AILMENTS1.Diabetes – causes ,	to		
Hrs,	hyper and hypoglycemic drugs.	10.05.2022	1 hr	
Assessment 2	Blood pressure – Sistolie&			
- Hrs	Diastolic Hypertensive drugs –		1hr	
Total – 6 Hrs	Cardiovascular drugs –			
	antiarrhythmic antianginals			
	vasodilators. 2.CNS depressants		1hr	
	and stimulants – Psychedelic drugs			
	,hypnotics sedatives (barbiturates			
	LSD).			
Unit V	HEALTH PROMOTING DRUGS		1 hr	
Content- 4				
Hrs,	1.Nutrients – Vitamins A, B, C, D, E		1 hr	

Assessment 2	and K. Micronutrients Na, K, Ca, Cu,	11.5.2022		
- Hrs	Zn and I – Medically important	to	1hr	
Total – 6 Hrs	inorganic compounds of Al P AS	18.05.2022		
	Hg Fe- L examples each their role			
	and application.		1hr	
	2.Organic harmaceutical acids ,			
	Agents for pilitary function			
	(metyrapone) – Organic			
	pharmaceutical bases –			
	antioxidants .			

C. ACTIVITIES

Activities Name	Details
Test	Monthly Test- Unit-I (Janurary)
	CIA / Mid Semester – Unit-I ,II(1/2 Unit) & IV (Februry)
Assignment	CIA / Model Examination -Unit-II(second 1/2 Unit), Unit III & Unit-V- 2 ½
	Assignment I –Unit –I& II (Feburary)
Quiz	
	Two Mark Quiz Test - Unit I
Seminar	
Tutorial Ward Meeting	Monthly once

¢

R. Don

Principal A.D.M. College For Women Autonomous, Nagapattinam.

Name of the Faculty	: Ms.N.P.RUDRA SHOWDRI
Department	: PG Department of Chemistry
Programme	: BSc Zoology/ Biochemistry/ Geology
Programme Code	: VMF
Name of the Paper	: NME- Food Science
Lecture Hours / Practical Hours	: 2 Hrs / Week / Lecture Hours

B. ABOUT THE COURSE

Course Objectives	Course Outcomes	Teaching Methodology
• To learn the importance of food	On completion of the	 Chalk and Talk
and nutritional care	Course, Students should	• Power point.
• To study the biological functions of	be able to	
food	• To acquire knowledge	
• To understand the constituents of	about adulteration in food.	
food	• To understand health	
	problems due to food	
	adulterants	

C. PLAN OF THE WORK

Unit / Modules	Topic to be covered	Proposed date	Lecture Hours	Practical Hours	Remarks
Modules Unit I Content- 4 Hrs, Assessment -2 Hrs Total - 6 Hrs	FOOD NUTRITION .Food, Nutrition and Health Nutritional care and health. Nutritional problems in India.	02.03.2022 to 06.03.2022	2 hrs 1hr	Hours	
			1hr		

Unit II	BIOLOGICAL				
Content- 4 Hrs	IMPORTANCE.Bioogical	18.03.2022			
Assessment -2	importance of food.	То	2hrs		
Hrs Total - 6 Hrs	Nutritional classification of	22.03.2022			
	food – nutrients as body				
	constituents – digestion and		2hrs	-	-
	absorption of food, caloric				
	content and dieting.				
Unit III	CONSTITUENT OF FOOD		2hrs		
Content- 4 Hrs,	Biological functions of	05.04.2022			
Assessment -2	carbohydrates, proteins, fats	to 10.04.2022			
Hrs Total - 6 Hrs	Vitamins, minerals and		Zhrs		
	water.				
Unit IV	FOOD ADULTERATION				
Content- 4 Hrs.	Food adulterants test and	12.04.2022	Zhrs		
Assessment -2	common adulterants in food	to	2hrs		
Hrs Total - 6 Hrs	2.Testing methods of all	13.04.2022			
	food adulterants.				
Unit V	HEALTH EFFECTS Health	07.05.2022			
Content- 4 Hrs.	Problems of food	to	1hr		
Assessment -2	adulteration	10.05.2022	1hr		
Hrs Total - 6 Hrs	2.Principal adulterants and				
	their health effects				

D.ACTICITIES

Test	Monthly Test- Unit-I (March)					
	CIA / Mid Semester – Unit-I ,II(1/2 Unit) & IV (March)					
	IA / Model Examination -Unit-II(second 1/2 Unit), Unit III & Unit-V- 2					
	⁄2 Units (April)					
	Assignment I –Unit –I (March)					
	Assignment II– Unit –I and Unit – II (April)					
Assignment						
	Two Mark Quiz Test - Unit III – Unit – IV (April)					
Quiz						
	Monthly once					
Seminar						
Tutorial Ward						
Meeting						

"

R. Dom

Principal A.D.M. College For Women Autonomous, Nagapattinam.

TEACHING PLAN

A. GENERAL INFORMATION

Name of the Faculty	:Dr.J.Bhuvana
Department	:PG Department of Chemistry
Programme	:B.Sc.,Chemistry
Programme Code	: USC
Name of the Paper	: Organic Chemistry
Lecture Hours / Practical Hours	:6 Hrs / Week / Lecture Hours.

Course Objectives	Course Outcomes	Teaching Methodology
• Students learn the Chemistry of	On completion of the	Chalk and Talk
Sugars.	course the learner will be	• Power point.
• Students learn the Chemistry of	able to know	• e- Module
Amino acids, Nucleic acids and	• The classification,	
Vitamins.	properties, structure and	
• Students study the Chemistry of	configuration of mono, di	
Alkaloid and Terpenoid.	and polysaccharides	
• Students learn the molecular	• The chemistry of proteins	
rearrangement and its	and vitamins.	
mechanism.	• The importance of	
• Students learn the basic concept	alkaloids and terpenoids.	
of UV-Visible , IR and NMR	• Predicting the molecular	
spectroscopy	rearrangements with its	
	types and mechanism	
	• The fundamental	
	principles of UV-Vis, IR	
	and NMR spectroscopy	

C. PLAN OF THE WORK

Unit /	Topic to be covered	Proposed	Lecture	Practica	Remark
Modules Unit I	Carbohydrate-classification, properties	date 22.02.22	Hours 3 Hrs	I Hours	S
Content- 15 Hrs, Assessment - 3	of mono saccharides	to 14.03.22	2 Hrs		
Hrs Total - 18 Hrs	saccharides, inter conversion Ascending		3 Hrs		
	epimerization Cyclicstructure-		2 Hrs	-	
	etermination of size of sugar rings. Disaccharides-sucrose, maltose-		3 Hrs		
	structure elucidation Polysaccharide-		2 Hrs		-
	treatment)				
Unit II	Amino acids- Zwitter ion- isoelectric	18.03.22	3 Hrs		
Hrs, Assessment -3	point – general methods of preparation and reactions of amino acids.Peptides-	01.04.22			
Hrs Total - 18 Hrs	Peptide linkages- proteins-		2 Hrs		
	classification of proteins. Structure of proteins - primary structure-end group		3 Hrs		
	analysis-Edman method-secondary				
	denaturation- Colour reactions of		2 Hrs	-	-
	proteins Nucleic acids-elementary treatment of DNA and RNA		2 Hrs		
	Vitamins-classification, structure and		3 Hrs		
	B2, B6 ,B12 and C.				
Unit III Content- 15	Chemistry of natural products-alkaloids-	05.04.22 to	2 Hrs		
Hrs, Assessment -3 Hrs	Synthesis of picotino and quipipo	13.04.22	3 Hrs		
Total – 18 Hrs	Terpenoids-classification-isoprene,		3 Hrs		
				-	-

	Methods for synthesis of citral and		1 Hr		
	limonene		0.11		
	Methods for synthesis of menthol and		3 Hrs		
	camphor		3 Hrs		
Unit IV	Molecular rearrangements-types of	27.04.22	2 Hrs		
Content- 15 Hrs	rearrangement (nucleophilic and	to 10.05.22	2.11		
Assessment -3	electrophilic) Mechanism with evidence	10100122	3 Hrs		
Hrs Total - 18 Hrs	for the following re-arrangements:		3 Hrs		
	pinacol-pinacolone, Benzil-benzilic acid,				
	Benzidine, Claisen re-arrangements		3 Hrs 2 Hrs		
	Fries, Hofmann re-arrangements		21115		
	Curtius, Lossen re-arrangements		2 Hrs		
	Beckmann and dienone-phenol				
	rearrangements				
				-	-
Unit V	UV - VIS spectroscopy - types of	11.05.22	3 Hrs		
Hrs,	electronic transitions –	23.05.22			
Assessment -3	strumentation- solvent effects on				
Total - 18 Hrs	λ maxWoodward-Fieser rules for				
	calculation of λ max : dienes only–		3 Hrs		
	batho hromic shift and hypso			-	-
	chromic shiftIR spectroscopy -				
	number and types of fundamental		3 Hrs		
	vibrations – selection rules-modes of				
	vibrations and their		2 Hrs		
	energies.Instrumentation-position of		.		
	IR absorption frequencies for		2 Hrs		
	functional groups like aldehyde,				
	ketone, alcohol, acid, amine and				
	amide. NMR spectroscopy -		2 Hrs		
	Principle-chemical shift-factors				
	affecting the chemical shift- ductive				
	effect and hydrogen bonding - TMS,				
	delta scales Splitting of signals -spin-				
	spin coupling, NMR spectrum of				
	functional groups like aldehyde, ketone, alcohol, acid, amine and amide. NMR spectroscopy - Principle-chemical shift-factors affecting the chemical shift- ductive effect and hydrogen bonding - TMS, delta scales Splitting of signals -spin- spin coupling, NMR spectrum of		2 Hrs		

EtOH,		

D. ACTIVITIES

Activities Name	Details
Test	Monthly Test- Unit-I (March)
	Monthly Test – Unit – II (April)
	CIA / Mid Semester – Unit-I ,II& III (first ½ portion)- 2 ½ Unit(April)
	CIA / Model Examination -Unit-III(Second 1/2 Unit) , Unit IV & Unit-V-
	2 ½ Units (May)
Assignment	Assignment I – Unit – I and Unit – II (April)
	Assignment II– Unit –III and Unit – IV (May)
Ouiz	Two Mark Quiz Test - Unit I - Unit - V (May)
Quiz	Two Mark Guiz Test Onie Tome V (May)
Seminar	Unit –V (May)
Tutorial Ward	Monthly once
Meeting	

"

R. Dom >

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

Name of the Faculty	: Dr. N. Prabha
Department	: Chemistry
Programme	: B.Sc
Programme Code	: BQL
Name of the Paper	: Physical Chemistry – II
Lecture Hours / Practical Hours	:6 Hrs / Week/Lecture Hours

	Course Objectives	Course Outcomes		Teaching Methodology
•	Students learn the basics of	•	Knowledge of electrical	1. Chalk and Talk
	electrochemistry and they		conductance with its	2. Power point.
	understand the practical use of		applications	3. e- Module
	electricity and their laws.	•	Learn depth about	
•	Students understand the nature		electrochemical cells and	
	of electrolytes and their theories		electrodes.	
	and the concept of emf and its	•	The applications of	
	application.		catalysis and isotherms	
•	Students learn the concept of	•	The use of UV	
	electrochemical cell and its		spectroscopy and	
	applications and the concept of		applications of IR and UV	
	ionic mobility and its practical		in chemical compounds.	
	applications.	•	The fundamental	
•	Students learn about types and		application of Raman	
	mechanism of catalysis and		and NMR spectroscopy.	
	absorption reactions.			
•	Students understand the effect			
	of radiation on humans and they			
	learn the basics of spectroscopy.			
•	Students learn about concepts of			
	NMR Spectroscopy.			

PLAN OF THE WORK

Unit /	Topic to be covered	Proposed	Lecture	Practical	Remarks
Modules		date	Hours	Hours	
Unit I	1. Electrochemistry –		3 hrs		
Hrs.	Introduction, Electrical				
Assessment -	transport and ohm's law,				
3 Hrs Total - 18 Hrs	conduction in metals and in	21.02.2022 to			
	electrolyte solution.	16.03.2022			
	Specific conductance and		2 hrs	-	
	equivalent conductance.				
	2.Measurement of				
	equivalent conductance				-
	using kohlrausch's bridge.				
	Variation of equivalent		3 hrs		
	conductance with				
	concentration.Migration of				
	ions-kohlrausch's law and				
	its applications.				
	3. Arrhenius theory of		3hr		
	electrolylic dissociation				
	and its limitations. Weak				
	and strong electrolylic				
	according to arrhenius		3hrs		
	theory. Ostwald's dilution				
	law, its uses and limitations.				
	4.Debye-Huckel Onsager		2hrs		
	equation for strong		21115		
	electrolytes. Evidence for				
	ionic atmosphere. The				
	conductance at high fields				
	(Wien effect) and high				
	frequencies (Debye-				
	Falkenhagen effect).				
	5.Transport number and				
	Hittorf's rule-determination				

	by Hittorf's method and				
	moving boundary method.				
	6.Condumetric titrations				
Unit II	1.Electrolytic and galvanic	17.03.2022			
Content- 15 Hrs.	cells, Reversible and	to 11.04.2022	3hrs		
Assessment -	irreversible cells.				
3 Hrs Total - 18 Hrs	Conventional				
10111 101115	representation of				
	Electrochemical cells.		2hrs		
	Electromotive force of a cell				
	and its measurements.				
	2.Applications of Gibbs		2hrc	-	-
	Helmholtz equation,		51115		
	concentration and E.M.F.				
	Nernst equation.				
	3.Types of reversible				
	electrodes – Gas/metal ion,				
	metal/metal ion,		3hrs		
	metal/insoluble salt/anion				
	and Redox electrodes.				
	Electrode reactions. Nernst		2hrs		
	equation-derivation of cell				
	E.M.F. and single electrode				
	potentials.		2hrs		
	4.Standard hydrogen				
	electrode – reference				
	electrodes – standard				
	electrode potentials –				
	Electrochemical series and				
	its significance.				
	5. Potentiometric titrations-				
	Acid –Base titrations-				
	Oxidation-				
	reduction(Redox)titrations-				
	Precipitation titrations.				

	Corrosion-general and				
	electrochemical theory-				
	passivity- prevention of				
	corrosion.				
Unit III	Catalyst-Definition and	12.04.2022	2hrs		
Content- 15 Hrs	Characteristics-Types of	to 25 04 2022			
Assessment -	catalysis- Homogeneous	25.01.2022	2hrs		
3 Hrs Total - 18 Hrs	- 18 Hrs and heterogeneous,		21115		
	induced, auto,positive and				
	negative catalysis, catalytic		2hrs	_	_
	poisons and catalytic				
	promoters.				
	Enzyme catalysis-		2 hro		
	Michaelis- menten equation		21115		
	and Michaelis – menten law.				
	Adsorption-types-chemical				
	and physical, characteristics				
	of adsorption theory.				
	Different types of				
	isotherms- Freundlich and				
	Langmuir adsorption				
	isotherms.				
Unit IV	1.Spectroscopy –	26.04.2022			
Content- 15 Hrs.	Introduction, Definition of	to 18.05.2022	3hrs		
Assessment -	spectrum. Electromagnetic				
3 Hrs Total - 18 Hrs	radiation, interaction of				
	electromagnetic radiation				
	with molecules and				
	quantisation of different				
	forms of energies in		3hrs		
	molecules. (Translational,				
	rotational, vibrational and				
	electronic).			-	-
	2. Microwave spectroscopy				
	– condition – molecular		3hrs		

rotation-theory of		
microwave spectroscopy-		
selection rule. Effect of		
isotopic substitution and		
calculation of moment of		
inertia and bond length of	2hrs	
diatomic molecules.	21115	
3. Infra red spectroscopy –		
condition – molecular		
vibration – modes of		
vibration of linear and non-		
linear molecules, modes of	2hrs	
vibration of diatomic,		
triatomic linear (Co ₂) &		
non-linear triatomic (H ₂ O)	2hrs	
molecular-stretching &		
bending vibrations selection		
rules.		
4. Expression for vibrational		
frequency (derivation not		
needed). Calculation of		
force constant – isotope		
effect – applications of I.R.		
spectra (group frequencies,		
finger printing, and		
Hydrogen bonding only).		
5. U.V.Visible spectroscopy		
– Introduction, condition –		
theory of electronic		
spectroscopy – 6Types of		
electronic transitions –		
Frank – condon principle –		
predissociation –		
applications.Raman		
Spectroscopy – Raleigh and		

Unit V Content- 15 Hrs, Assessment - 3 Hrs Total - 18 Hrs	 Raman scattering – stock and antistocklines . Differences between Raman and IR spectroscopy 	19.05.2022 to 11.06.2022	3hrs 2hrs		
	 mutual exclusion principle Application. 3. N.M.R. Spectroscopy - Introduction, magnetic and 		2hrs	-	-
	non-magnetic nuclei – condition principle of nuclear magnetic esonance. 4. Ring current effect –		2hrs		
	shielding mechanism –		3hrs		
	signals – spin – spin. Coupling – coupling		3hrs		
	constant (J) – splitting of signals.				
	6. NMR spectra of simple organic compounds. NMR				
	spectrum of ethylalcohol in detail.				

D. ACTIVITIES

Details
Monthly Test- Unit-I (March)
CIA / Mid Semester – Unit-I ,II - 2 Unit (April)
CIA / Model Examination -Unit-III , Unit IV & Unit-V- 3Units (June)
Assignment I –Unit –I & II (April)
Assignment II– Unit –III to Unit – V (May)
Two Mark Quiz Test - Unit I – Unit – V (May)
Unit –V (May)
Monthly once

(

R. Dom

PRINCIPAL

Principal A.D.M. College For Women Autonemous, Nagapattinam.

Name of the Faculty	: Dr.N.Prabha& M.Sivagamasundari
Department	:PG Department of Chemistry
Programme	: B.Sc., Chemistry
Programme Code	: USC
Name of the Paper	: Gravimetric & Organic Analysis Practical
Lecture Hours / Practical Hours	: 6Hrs / Week / Practical Hours

	Course Objectives	Course Outcomes	Practical Methodology
•	Students learn the	• To know the technique of	• Students has to be in time for
	techniques of	organic qualitative	the laboratory
	gravimetric analysis.	analysis.	• Students are not allowed into
•	Students learn the	• To learn the	the lab without prepared
	methods of preparing	determination of Physical	Observation Note.
	organic compounds.	constants of organic	• A student has to complete the
•	Students learn the	compounds.	practical and calculations at
	determination of		the stipulated time give to
	physical constants of		them.
compounds.			• Students have to receive the
•	Students learn the		signature in the observation
techniques of organic			note on the same day or on or
	qualitative analysis		before entering the next
•	Students learn the		practical class.
	derivatives of organic		
	qualitative analysis.		

C.PLAN OF THE WORK

Unit / Modules	Topic to be covered	Proposed date	Lecture Hours	Practical Hours	Remarks
	1.Determination of boiling /melting points by semi micro method.	21.2.2022 to 09.03.2022			
	2. Preparation of Organic CompoundsOxidation ,Reduction, Hydrolysis ,Nitration , Bromination , Diazotization, Osazone formation	07.05.2022			
	 Estimation of Lead as lead chromate. Estimation of Barium as barium chromate. Estimation of Nickel as Nickel - DMG complex. Estimation Calcium as calcium oxalate monohydrate Estimation of Barium as barium sulphate. 	17.03.2022 to 12.04.2022			
	Organic Aalysis -I to VII	22.04.2022 to 03.05.2022			

D.ACTIVITIES

Activities Name	Details
Repetition Class	
Observation Correction	01.06.2022 to 10.06.2022
Record Correction	
Mid Semester	
Model Practical	

6

R. Om 0

Principal A.D.M. College For Women Autonomous, Nagapattinam.

Name of the Faculty	: Mrs. S.Malathy
Department	:PG Department of Chemistry
Programme	: B.Sc., Chemistry
Programme Code	: USC
Name of the Paper	: Nuclear, Industrial Chemistry and Metallic State
Lecture Hours /Practical Hours	:6 Hrs / Week / Lecture Hours.

Course Objectives	Course Outcomes	Teaching Methodology	
Students learn about fundamental	• On completion of the	Chalk and Talk	
of Nuclear Chemistry. • Students will learn	course the learner will be able	• Powerpoint.	
measurement and applications of	Acquire	• e-Module	
radioactive isotopes.	knowledge of nuclear		
• Students study composition	structure, stable and		
matches naint and varnish	unstable atomic nuclei.		
• Students understand the	 Know the fundamentals of 		
various theories of metallic	radioactivity, isotonic		
bonding, different types of semi	chemistry, radiation		
conductors.	chemistry and the		
• Students shall know the	applications of these in		
composition and uses of Inorganic	medicine, agriculture and		
polymers and silicates.	Industry.		
	• Learn about the		
	paints and varnishes.		
	• Handle the		
	semiconductors.		
	• Gain a preliminary		
	understanding of inorganic		
	polymers.		

C. PLAN OF THEWORK

Unit /	Topic to be covered	Proposed	Lecture	Practical	Remarks
Modules		date	Hours	Hours	
Unit I	NUCLEAR CHEMISTRY I				
Content- 15	 Introduction 		2hrs		
Assessment -	composition of nucleus				
3 Hrs	and nuclear forces.				
Total - 18 Hrs	 Nuclear stability – o/n 		3hrs		
	ratio. mass defect.			-	
	binding energy,	24.02.2022	3 hrs		
	• packing fraction and	to 09.03.2022			
	magic numbers, shell		3hrs		-
	and drop models.				
	• Isotopes – detection and				
	separation. Isotopic		3hrs		
	constitution of elements				
	and whole number rule.		1hrs		
	Deviation of atomic				
	weights from whole				
	numbers.				
	• Isobars, isotones and				
	isomers.				
	NUCLEAR CHEMISTRY				
Unit II	IIRadioactivity- Radioactive	11.03.2022 to	3hrs		
Hrs,	emanations. Disintegration				
Assessment - 3 Hrs Total - 18 Hrs	theory – modes of decay –				
	Group displacement law –	22.03.2022			
	Rate of disintegration – Half				
	life and average life –		2 hrs		
	Radioactive series, Geiger				
	Nuttal rule.		4hrs		
	Detectionand				
	measurements -Wilson		2 hrs		
	cloud chamber & Geiger		2 111 5		

	Muller Counter. Nuclear		4hrs	
	transformations use of			
	projectiles nuclear			
	reactions fission and			
Unit III	INDUSTRIAL CHEMISTRY			
Content -15 Hrs	Fossil fuels – varieties of	25.03.2022 to	3hrs	
Assessment -	coal and petroleum –			
Total-18 Hrs.	petroleum refineries in		21	
	IndiaGaseous fuels –		2 hrs	
	natural, gobar, coal, water,			
	semi water and producer	08.04.2022	4hrs	
	gases Liquefied Petroleum			
	Gases (LPC) Safety			
	matches Introduction		2 hrs	
	Paw materials and		4hrs	
	manufacturing methods			
	manufacturing methous.			
	Paints and varnishes-			
	Definition, types and			
	composition.			
Unit IV	METALLIC STATE	00.04.2022		
Content -15	Motallic state packing of	09.04.2022 to		
Hrs,	atoma in matal	27.04.2022	3hrs	
Assessment- 3 Hrs.	atoms in metal			
Total-18 Hrs.				
	Theories of metallic		4hrs	
	bonding- Electron gas			
	Pauling and Band theories.		3hrs	
	Structure of alloys		0he	
	substitutional and		ZHTS	
	interstitial solid solutions –			
	humerothery ratios crystal		Shre	
	defects.		51115	
	Semi conductors – Extrinsic			
	and Intrinsic – n-type and			
---------------------	---	------------	------	--
	p-type conductors.			
	 Structure and uses in 			
	electronic industry			
Unit V	INORGANIC POLYMERS &			
Content- 15 Hrs,	SILICATES		3hrs	
Assessment - 3 Hrs	Inorganic polymers –	2804.2022		
Total - 18 Hrs	coordination polymers,	to	21	
	metal alkyls,	10.05.2022	3nrs	
	phosphonitrilic polymers.			
	Silicates – Classification		2hrs	
	into discrete an ions, one,		3hrs	
	Two and three dimensional			
	structure with typical		4hrs	
	examples. Composition,			
	properties and uses of			
	beryl, asbestos,			
	Talc, mica, zeolites and			
	ultramarines.			

Activities Name	Details
Test	Monthly Test- Unit-I & II (March)
	CIA / Mid Semester – Unit-I ,III (first ½ portion)& Unit-II -
	2 ½ Unit(October)
	CIA / Model Examination -Unit-III(Second 1/2 Unit) , Unit III & Unit-V-
	2 ½ Units (April)
Assignment	Assignment I – Unit – I and Unit – II (March)
Quiz	Two Mark Ouiz Test Unit I to Unit - IV (May)
Sominar	Two Mark Quiz Test - Onit I to Onit – V (May)
Tutorial Ward Meeting	Unit –V (May)
	Monthlyonce

6

R. Dom

PRINCIPAL

Principal A.D.M. College For Women Autonemous, Nagapattinam.

Name of the Faculty	:	Mrs. A. Rakini
Department	:	PG Department of Chemistry
Programme	:	B.Sc., Chemistry
ProgrammeCode	:	UCS
Name of the Paper	:	Agricultural Chemistry
Lecture Hours /		
Practical Hours	:	75 Hrs / Week / Lecture Hours.

Course Objectives	Course Outcomes	Teaching Methodology
• Students learn about the	• On completion of the	Chalk and Talk
composition and properties of	• Course, Students should be able	• Power point.
soil.	to Students acquire the basic	• e- Module
• Students understand the source	knowledge of Composition,	
and properties of Micronutrient	Physical and Chemical	
fertilizer.	properties of soil.	
• Students know the importance of	• Students able to understand	
Green manure.	the secondary and	
• Students study about the pest	micronutrient fertilizer.	
management and its control.	• Students can accumulate skills	
• Students know the chemistry of	about green manure.	
Fungicide, Herbicide and	• Students should be able to	
Acaricide.	apply the knowledge of Pest	
	Management and control.	
	• Students should know the	
	preparation and applications of	
	fungicides and herbicides.	

Unit / Modules	Topic to be covered	Proposed date	Lecture Hours	Practical Hours	Remarks
Unit I	COMPOSITION AND				
Content- 12 Hrs	PROPERTIES OF SOIL				
Assessment -3 Hrs Total - 15 Hrs	Definition of soil, soil		2 hrs		
	composition. Soil Physical				
	properties soil, separates and				
	particle size distribution soil		3hrs		
	texture and structure. Bulk				
	density, particle density, pore				
	space, soil air, soil	25.02.2021	2hrs		
	temperature, soil water. Soil	to			
	chemical properties – soil	07.03.2021			
	colloids – Inorganic colloids –				
	clay minerals – amorphous – Ion				
	exchange reactions – organic		2hrs		
	colloids soil organic matter –				
	Decomposition – Humus				
	formation – significance on		3hrs		
	soil fertility, soil reaction.				
Unit II	MICRONUTRIENT				
Content- 12 Hrs	FERTILIZER				
Assessment	Secondary and micronutrient				
-3 Hrs Total - 15	fertilizers – complex and				
Hrs	mixed fertilizers – sources,		3 hrs		
	manufacture, properties and			_	_
	reactions in soils.		2 hrs		
	Preparation of slow release				
	fertilizer – compatibility of		3 hrs		
	fertilizers – fertilizer blending	09.03.2021			

Unit III	GREEN MANURE			
Content- 12 Hrs.	Nutrient potential of different			
Assessment	organic manures			
-3 Hrs Total - 15	Agricultural, industrial and		2 hrs	
Hrs	urban wastes – Preparation			
	of enriched farm yard		2 hrs	
	manures - Zinc enriched			
	organics. Green manures –			
	green leaf manure – bulky		3 hrs	
	organic and concentrated			
	organic manures -ting of coir	25.03.2022	2 hrs	
	pith; sugarcane trash, leaf	to		
	litters and farm wastes - oil	08.04.2022		
	cakes, bone meal, fish meal,		2 hrs	
	guano poultry manures -			
	Fertilizer use efficiency –			
	integrated nutrient			
	management.			
Unit IV	PEST MANAGEMENT &			
Content-12 Hrs	CONTROL Pesticides –			
Content- 12 Hrs, Assessment	CONTROL Pesticides – formulations – emulsifiable			
Content- 12 Hrs, Assessment -3 Hrs Total - 15	CONTROLPesticides-formulations-emulsifiableconcentrate,watermiscible		2hrs	
Content- 12 Hrs, Assessment -3 Hrs Total - 15 Hrs	CONTROLPesticides-formulations-emulsifiableconcentrate,watermiscibleliquids,wettablepowders		2hrs	
Content- 12 Hrs, Assessment -3 Hrs Total - 15 Hrs	CONTROLPesticides-formulations-emulsifiableconcentrate,watermiscibleliquids,wettablepowdersdusts,granules,Classification		2hrs	
Content- 12 Hrs, Assessment -3 Hrs Total - 15 Hrs	CONTROLPesticides–formulations–emulsifiableconcentrate,watermiscibleliquids,wettablepowdersdusts,granules,Classificationofpesticides–modeofaction		2hrs	
Content- 12 Hrs, Assessment -3 Hrs Total - 15 Hrs	CONTROLPesticides–formulations–emulsifiableconcentrate,watermiscibleliquids,wettablepowdersdusts,granules,Classificationofpesticides–ofpesticides–ofaction–characteristics–usesand		2hrs 2 hrs	
Content- 12 Hrs, Assessment -3 Hrs Total - 15 Hrs	CONTROLPesticides–formulations–emulsifiableconcentrate,watermiscibleliquids,wettablepowdersdusts,granules,Classificationofpesticides–ofpesticides–-characteristics–safetymeasuresin		2hrs 2 hrs	
Content- 12 Hrs, Assessment -3 Hrs Total - 15 Hrs	CONTROLPesticides–formulations–emulsifiableconcentrate,watermiscibleliquids,wettablepowdersdusts,granules,Classificationofpesticides–ofpesticides–usesandandanalysisandhandling		2hrs 2 hrs	
Content- 12 Hrs, Assessment -3 Hrs Total - 15 Hrs	CONTROLPesticides–formulations–emulsifiableconcentrate,watermiscibleliquids,wettablepowdersdusts,granules,Classificationofpesticides–ofpesticides–usesandandsafetymeasuresinanalysisandhandlingofpesticides.Insecticidesusesanationuses<		2hrs 2 hrs	
Content- 12 Hrs, Assessment -3 Hrs Total - 15 Hrs	CONTROL Pesticides – formulations – emulsifiable concentrate, water miscible liquids, wettable powders dusts, granules, Classification of pesticides – mode of action – characteristics – uses and safety measures in the analysis and handling of pesticides. Insecticides – plant products– Nicotine, pyrethrum,		2hrs 2 hrs 2 hrs	
Content- 12 Hrs, Assessment -3 Hrs Total - 15 Hrs	CONTROL Pesticides – formulations – emulsifiable concentrate, water miscible liquids, wettable powders dusts, granules, Classification of pesticides – mode of action – characteristics – uses and safety measures in the analysis and handling of pesticides. Insecticides – plant products– Nicotine, pyrethrum, rotenone, petroleumoils.	09.04.2022	2hrs 2 hrs 2 hrs	
Content- 12 Hrs, Assessment -3 Hrs Total - 15 Hrs	CONTROLPesticides–formulations–emulsifiableconcentrate,watermiscibleliquids,wettablepowdersdusts,granules,Classificationof pesticides–mode of action–characteristics–usesandsafetymeasuresintheanalysisandhandlingofpesticides.Insecticides–rotenone,petroleumoils.InorganicPesticidesInorganicPesticides–	09.04.2022 to	2hrs 2 hrs 2 hrs	
Content- 12 Hrs, Assessment -3 Hrs Total - 15 Hrs	CONTROL Pesticides – formulations – emulsifiable concentrate, water miscible liquids, wettable powders dusts, granules, Classification of pesticides – mode of action – characteristics – uses and safety measures in the analysis and handling of pesticides. Insecticides – plant products– Nicotine, pyrethrum, rotenone, petroleumoils. Inorganic Pesticides – Arsenical fluorides, borates.	09.04.2022 to 02.05.2022	2hrs 2 hrs 2 hrs 2 hrs	
Content- 12 Hrs, Assessment -3 Hrs Total - 15 Hrs	CONTROL Pesticides – formulations – emulsifiable concentrate, water miscible liquids, wettable powders dusts, granules, Classification of pesticides – mode of action – characteristics – uses and safety measures in the analysis and handling of pesticides. Insecticides – plant products– Nicotine, pyrethrum, rotenone, petroleumoils. Inorganic Pesticides – Arsenical fluorides, borates. Organic pesticides – organ	09.04.2022 to 02.05.2022	2hrs 2 hrs 2 hrs 2 hrs	
Content- 12 Hrs, Assessment -3 Hrs Total - 15 Hrs	CONTROL Pesticides – formulations – emulsifiable concentrate, water miscible liquids, wettable powders dusts, granules, Classification of pesticides – mode of action – characteristics – uses and safety measures in the analysis and handling of pesticides. Insecticides – plant products– Nicotine, pyrethrum, rotenone, petroleumoils. Inorganic Pesticides – Arsenical fluorides, borates. Organic pesticides – organ chlorine compounds – D.D.T,	09.04.2022 to 02.05.2022	2hrs 2 hrs 2 hrs 2 hrs	

	chloredane, endosulfon.			
	Organophosphorous			
	compounds dichlorevas,			
	methyl carbamic acid		2 hrs	
	derivatives – carbaryl –			
	structure and mode of action.			
Unit V	FUNGICIDES,HERBICIDES&			
Content- 12 Hrs	ACARICIDES			
Assessment	Fungicides, inorganic –		2hrs	
-3 Hrs Total - 15	sulphur compounds – copper			
Hrs	compounds – Mercuric			
	compounds, organic –		2hrs	
	dithiocarbamates – Dithane			
	.Boredeaux mixture.	09.05.2022		
	Herbicides : Inorganic	to		
	herbicides – Arsenical	23.05.2022	2 hrs	
	compounds Boron			
	compounds cyanamide –			
	cyanides and thiocyanates,			
	chlorates and sulphamates.			
	Organic herbicides - Nitro-			
	compounds,chlorinated		2 hrs	
	compounds – 2,4D-Pyridine			
	compounds , Triazine			
	compounds – Propionic acid			
	derivatives – urea herbicides,		2 hrs	
	alachlor. Acaricides –			
	Rodenticides – Attractance –			
	Repellants – Fumigants		2 hrs	
	Defoliants.			

Activities Name	Details
Test	Monthly Test- Unit-I& II (March)
	CIA / Mid Semester – Unit-I ,II& Unit-III (first ½ portion) - 2 ½
	Unit(March)
	CIA / Model Examination -Unit-III(Second 1/2 Unit) , Unit IV&Unit-V- 2
	½ Units(April)
Assignment	Assignment I –Unit –I and Unit –II (March)
	Assignment II – Unit –III and Unit – IV (April)
Quiz	Two Mark Quiz Test - Unit I to Unit – V (May)
Seminar	Unit –V (April)
Tutorial Ward	
Meeting	Monthly once

¢

R. Don

PRINCIPAL

Principal A.D.M. College For Women Autonemous, Nagapattinam.

Name of the Faculty	: R.MAHESWARI
Department	: Chemistry
Programme	: M.Sc., Chemistry
Programme Code	: PSC
Name of the Paper	: Inorganic Chemistry II
Lecture Hours / Practical Hours	: 90Hrs

B. ABOUT THE COURSE

course objectives							
Inderstand	tho	role	of	mot			

Course Objectives

- Understand the role of metal ions in biological process.
- Learn the basic concepts of chemotherapy.
- Know the principle of catalysis and reaction mechanisms of organometallics.
- Illustrate the structure and bonding in organometallics.
- Acquire knowledge in the field of medicinal bioinorganic chemistry.

Course Outcomes

- On completion of the course the learner will be able
- Apply the basic principles in bioinorganic chemistry.
- Illustrate the role of metal in biological system and their function.
- Describe the structural and functional relationship, mechanisms and importance of Metalloenzymes.
- Tabulate the role of metal ions in enzymes involved in acidbase reactions.
- Explain the role of metal ions that are involved in electron – transfer reactions in biological systems.

Teaching Methodology

- Chalk and Talk
- Power point.
- e- Module

Unit / Modules	Topic to be covered	Propose d date	Lecture Hours	Practica L Hours	Remarks
Unit- I	GENERAL PRINCIPLES OF	23.2.202	nouis	Thous	
Content- 15	BIO INORGANIC	2 to			
Hrs,	CHEMISTRY	21.3.202	4hrs		
Assessment -	Occurrence and availability of	2			
3 Hrs	inorganic elements in				
Total - 18 Hrs	biological systems bio				
	assembly of advanced		3hrs		
	materials in biology-				
	nucleation and crystal				
	growth-various bio				
	minerals-calcium phosphate		4hrs		
	– calcium carbonate –				
	minerals – strontium and				
	barium sulphate.				
	Function and transport of				
	alkali and alkaline earth		4hrs		
	metal ions: characterization				
	of K ⁺ ,Na ⁺ ,Ca ²⁺ and Mg ²⁺⁻				
	alkaline earth metal ions				
	with macrocycles –ion				
	channels– ion pumps,				
	transfer)-charge separation				
	and electron transport–				
	manganese catalyzed				
	oxidation of water to 02.				
Unit -II	AMINES , PROTEINS AND	24.3.202	3hrs		
Content- 15 Hrs,	ENZYMES	2 to 6.4.2022			
Assessment -	Cobalamines: reactions of		2hrs		
Total - 18 Hrs	the alkyl cobalamines – one				
	electron reduction and		3hrs		
	oxidation-Co-Cbond		51115		
	cleavage – coenzyme B12–				
	alkylation reactions of		4hrs		
	methyl cobalamin.		-1115		
	Heme and non-heme				
	proteins - haemoglobin and		3hrs		
	myoglobin – oxygen				
	transport and storage-				
	electron transfer and oxygen				

	activation – cytochromes,			
	ferredoxins and rubredoxin-			
	model systems, mononuclear			
	non- heme iron enzymes			
	Connor containing protoing			
	classification and examples-			
	electron transfer- oxygen			
	transport-oxygenation-			
	oxidases and reductases-			
	cytochrome oxidase-			
	Superoxide dismutase			
	(Cu,Zn)–nickel containing			
	enzyme: urease.			
Unit -III Content- 15 Hrs, Assessment -	MEDICINAL BIOINORGANIC CHEMISTRY Bioinorganic chemistry of	9.4.2022 to 7.5.2022	4hrs	
3 Hrs Total - 18 Hrs	quintessentially toxic metals–lead, cadmium, mercury, aluminium, chromium, copper and plutonium detoxification		3hrs	
	by metal chelation– drugs that act by binding at them etalsites of metallo enzymes.		4hrs	
	Chemotherapy– chemotherapy with compounds of certain non- essential elements – platinum complexes in cancer therapy – cisplatin and its mode of action– cytotoxic compounds of other metals		4hrs	
	Gold containing drugs as anti- rheumatic agents and their mode of action – lithium in psycho pharmacological drugs– radiopharmaceuticals– technetium			
Unit -IV Content- 15 Hrs, Assessment - 3 Hrs	ORGANOMETALLICS: The 18 electron rule – applications and limitations– isolobal concept and its	9.5.2022 to 18.5.202 2	4hrs	

Total - 18 Hrs	usefulness-uses of typical		3hrs	
	organometallics such as			
	metal alloys and			
	organometallic hydrides in			
	organic synthesis.		4hrs	
	Nitrosyl complexes –			
	bridging and terminal			
	nitrosyls, bent and linear			
	nitrosyls –dinitrogen			
	complexes-metallocene		4hrs	
	and arene complexes–			
	metalcarbenes, carbenes,			
	carboxylate anions.			
	Classification based on			
	captivity and polarity of M-			
	C bond, organometallic			
	compounds of lanthanides			
	and actinides–fluxional			
	organometallic			
	compounds-			
	organometallics in			
	medicine,agriculture,			
	horticulture and industry.			
Unit -V	REACTIONS AND	20.5.202		
Content- 15	CATALYSIS BY	2 to	4hrs	
ПГS, Assessment -	ORGANOMETALLICS:	2.0.2022		
3 Hrs	Organometallic reactions-			
Total - 18 Hrs	ligand association and			
	dissociation – oxidative		3hrs	
	addition and reductive			
	elimination-insertion			
	reactions.		41	
	Reactions of coordinated		4nrs	
	hydrogenetien			
	hydrogenation,			
	nyul oloi mylation,			
	Polymorization of clofing		Abro	
	olofin ovidation (Masher		41115	
	process) and carbonylation of			
	mothanol			
	methanoi.			

Activities Name	Details
Test	Monthly Test- Unit-I (Janurary)
	CIA / Mid Semester – Unit-I ,II - 2 Unit (Feburary)
	CIA / Model Examination -Unit-III , Unit IV & Unit-V- 3Units (March)
Assignment	Assignment I –Unit –I& II (Feburary)
	Assignment II– Unit –III to Unit – V (March)
Quiz	Two Mark Quiz Test - Unit I – Unit – V (March)
Seminar	Unit –V (March)
Tutorial Ward	Monthly once
Meeting	

¢

R. Don C >

PRINCIPAL

Principal A.D.M. College For Women Autonemous, Nagapattinam.

Name of the Faculty	: Ms.N.P.RUDRA SHOWDRI
Department	: Chemistry
Programme	: M.Sc., Chemistry
Programme Code	:PSC
Name of the Paper	: PHYSICAL METHODS IN CHEMISTRY
Lecture Hours /	
Practical Hours	: 3Hrs / Week / Lecture Hours.

Course Objectives	Course Outcomes	Teaching Methodology
 Understand the principles of molecular spectroscopy. Study UV, NMR and IR spectroscopy of organic compounds. Learn the ESR, ORD and Mass spectroscopy of organic compounds. Know the effect of X-ray, electron, neutron diffractions of compounds. 	 On completion of the course the learner will be able Describe the selection rule for Infrared -active transitions. Compare and contrast atomic and molecular spectra. Apply spectral concepts to solve the problems, elucidate structures of simple compound Perform the most commonly used NMR experiment to interpret and document their results. 	 Chalk and Talk Power point.

Unit /	Topic to be covered	Proposed	Lecture	Practical	Remarks
Modules		date	Hours	Hours	
IImit I					
Contont -15	SPECTROSCODY				
Hrs	1 Microwaye spectroscopy				
Assessment	rotational spectra of diatomic		3 hrs		
-3Hrs.	molecules. rigid and non-rigid		0 111 0		
Total-18	rotors – intensity of spectral lines				
Hrs.	2.Effects of isotopic substitution –		2 hrs		
	microwave spectra of poly atomic				
	molecules- linear and symmetric				
	top molecules		_		
	3.Infrared spectra–diatomic	02.3.2022	1 hr		
	molecules, simple harmonic and an	to			
	harmonic oscillators.	26.3.2022			
	4.Diatomic vibrating rotator		1 hr		
	carbon monoxide		1 111		
	5 Interaction of rotation and				
	vibration(breakdown of Born-		2hrs		
	Oppenheimer approximation)				
	6. Influence of the rotation on the				
	spectrum of poly atomic molecules,				
	linear and symmetric top				
	molecules, parallel and		1 hr		
	perpendicular vibrations-influence				
	of nuclear spin.		11		
	7. Raman spectra-rotational		1 hr		
	Raman spectra of linear and				
	8 Vibrational Raman spectra				
	rotational fine structure-electronic		2 hr		
	spectra of diatomic molecules				
	9.Vibrational coarse structure-				
	intensity of vibrational lines in				
	electronic spectra- rotational fine				
	structure – fortrat diagram.				

Unit III	ULTRAVIOLET AND VISIBLE				
Content- 15	SPECTROSCOPY				
Hrs, Assessment	Introduction and instrumentation of		1 hr		
-3 Hrs	Uv-Vis spectroscopy				
Total - 18	Woodward and Fisher – Scott rules,	20 02 2022			
піз	applications to conjugated cyclic	20.03.2022 to			
	ketones	09.04.2022			
	Alpha,beta unsaturated cyclic ketones				
	Benzene and its substituted				
	derivatives.		1 hr		
	Differentiation of Geometrical isomers				
	and position isomers.				
	INFRARED SPECTROSCOPY				
	Instrumentation and sampling		1 hr		
	techniques, types of stretching and				
	bending vibrations		2hrs		
	Group frequencies – both internal and		21110		
	external,quantitative studies				
	identification of functional groups of				
	hydrogen bonding (intermolecular		1 hr		
	and intramolecular)				
Unit V	X-RAY DIFFRACTION				
Lontent -15 Hrs,	1. X- Ray diffraction by single crystal methods, space groups –		1 hr		
Assessment	systematic absences in X-ray data				
-3Hrs. Total-18	2.Identification of lattice types, glide planes and screw axes		Zhrs		
Hrs.	3.X-ray intensities – structure		_		
	factor and its relation to intensity and electron density –		2hrs	_	_
	phase problem	05.05.2022	2hrs		
	4.Structure solution by heavy	to 20 5 2022			
	5. Determination of absolute	20.3.2022	1 hr		
	configuration of molecules–a brief				
	Database (CSD)		1 hr		
	6. Protein Data Bank(PDB). 7. Electron diffraction by gases				
	8.Scattering intensity vs.		1 hr		
	scattering angle, 9.Wierl				
	techniques.		2 hr		

Activities Name	Details
Test	Monthly Test- Unit-I& II (March)
	CIA / Mid Semester – Unit-I ,II & Unit-III (first ½ portion) - 2 ½
	Unit(April)
	CIA / Model Examination -Unit-III(Second 1/2 Unit) , Unit IV&Unit-V- 2
	½ Units(May)
Assignment	Assignment I –Unit –I and Unit –II (March)
	Assignment II – Unit –III and Unit – IV (April)
_	
Quiz	Two Mark Quiz Test - Unit I to Unit – V (May)
a .	
Seminar	Unit –V (May)
Tutorial Ward	Monthly once
Meeting	

C

R. Dom C

PRINCIPAL

Principal A.D.M. College For Women Autonemous, Nagapattinam.

Name of the Faculty	: Dr.J.BHUVANA & N.P.RUDRA SHOWDRI
Department	: Chemistry
Programme	: M.Sc
Programme Code	: PSC
Name of the Paper	: ORGANIC CHEMISTRY PRACTICAL – II
Lecture Hours / Practical Hours	: 6 Hrs / Week / Practical Hours

Course Objectives			Course Outcomes		Practical Methodology	
•	Carry out	the	•	On completion of the course	•	Students has to be in time for
	qualitative			the learner will be able to		the laboratory
	analysis of	an			•	Students are not allowed into
	organic mixtur	e.	•	Study the estimation of		the lab without prepared
•	Perform	the		chemicals, which provide		Observation Note.
	preparation	of		knowledge about the purity	•	A student has to complete the
	organic			and concentration		practical and calculations at
	compounds.					the stipulated time give to
			•	Expertise in organic		them.
				synthetic methods	•	Students have to receive the
						signature in the observation
						note on the same day or on or
						before entering the next
						practical class.

Topic to be covered	Proposed date	Lecture Hours	Practical Hours	Remarks
Estimation of phenol and	21.02.22	-	6 Hrs	
annine	01 02 22		6 Uno	
glucose	01.03.22	-	6 HIS	
Estimation of saponification value of an oil and iodine value of oil.	09.03.22	-	6 Hrs	
Preparationofp-Bromoacetanilidefromaniline(acetylationandbromination)Acetylsalicylicacidfrommethylsalicylate(hydrolysisandacetylation)	17.03.22	-	6 Hrs	
Preparationof1,3,5-Tribromobenzene from aniline(bromination,diazotizationand hydrolysis)p-Nitroanilinefromacetanilide(nitrationandhydrolysis)	25.03.22	-	6 Hrs	
Preparation of Benzilic acid from benzoin (rearrangement) p-Aminobenzoic acid from p- nitrotoluene (oxidation and reduction)	04.04.22	-	6 Hrs	
Preparation of p-Bromoaniline from acetanilide (bromination and hydrolysis) m-Nitroaniline from nitrobenzene(nitration and reduction)	02.05.22	-	6 Hrs	

Name of the Faculty	: R.MAHESWARI
Department Programme	: Chemistry : M.Sc.,
Programme Code	: PGQIY
Name of the Paper	: Inorganic chemistry practical-II
Lecture Hours /Practical Hours	: 6 Hrs / Week /

Course Objectives	Course Outcomes	Teaching Methodology
• To perform the qualitative	• On completion of the course	• Students has to be in time for
analysis of a given Inorganic	students should be able to	• the laboratory
mixture.	• Doing the estimation of	• Students are not allowed into
• To carry out the preparation	chemicals which provide	• the lab without prepared
of Inorganic complexes.	knowledge about the purity	Observation Note.
	and concentration.	• A student has to complete
•.	• Expertise inorganic synthetic	• the practical and calculations
	methods	• at the stipulated time give to
		• them.
		• Students have to receive the
		• signature in the observation
		• note on the same day or on
		• or before entering the next
		• practical class.

Unit /	Topic to be covered	Proposed	Lecture	Practical	Remarks
Modules	Estimation by Complexemetry	2E 2 2022 to	nours	nours	
	Estimation by complexometry :	25.2.2022 10		2020	
	• 1. Titrimetry and Gravimetry	23.3.2022		2015 2Hrs	
	 A mixture of solution(s) should be given for 			2Hrs	
	 Estimation of Cu(V) and Ni(G) 				
	• Cu(V) and Zn(G)				
	• Fe(V) and Zn(G)				
	• Fe(V) and Ni(G)				
	• ZnI and Cu(G)				
	Preparation of complexes	1.4.2022 to			
	 1.Tris(thiourea) copper(I) chloride 	10.5.2022		2Hrs	
	 2.Tetraammine copper(II) sulphate 			2Hrs	
	• 3.Potassium tri oxalate ferrate			2Hrs	
	 4.Potassium tri 27 xalate aluminate(III) 				
	• 5.Potassium tri 27 xalate chromate(III)				
	 6.Hexammine cobalt(III)chloride 				

D. ACTIVITIES

Activities Name	Details
Repetition Class	25.2.2022 to 10.5.2022
Observation Correction	
Record Correction	
Mid Semester	
Model Practical	

¢

R. Don 0

PRINCIPAL

Principal A.D.M. College For Women Autonemous, Nagapattinam.

Name of the Faculty	:Mrs.M.Sivagamasundari
Department	: Chemistry
Programme	: M.Sc Chemistry
Programme Code	:PSC
Name of the Paper	:Non Conventional energy sources
Lecture Hours / Practical I	Hours :6 Hrs / Week/ Lecture Hours

Course Objectives	Course Outcomes	Teaching Methodology
• To understand the various types of energy	• On completion of the course the student will be able to	• Power point
sources.		• E- module
• To learn about the solar energy	 To Understand the various energy sources To Understand the solar energy 	• Chalk and Talk method
• To introduce the importance of wind energy & fuel cells.	 To learn about the wind energy To study the Bio energy and it's composition, wet 	
• To acquire knowledge about bioenergy.	process and dry processTo learn about the tidal power plants	
• To know the different tidal power plants.		

Unit / Module	Topic to be Covered	Proposed date	Lecturer Hour	Practical Hours	Remark
Module		uate	mour	nours	
Unit I	1.Energy sources		3 hrs		
Content- 15	introduction to energy,				
Hrs,	Different forms of energy		2 hrs		
Assessment- 3Hrs	2.Primary and secondary				
Total- 18	sources				
Hrs	3.Various types of	02.303.2022 to 19.	2 hrs		
	conventional Energy	03.2022			
	sources, Fossil fuel		3 hrs		
	energy4.Hydraulic				
	energy and nuclear		2 hrs		
	energy, Various types of				
	Energy sources				
	5.Wind energy, Tidal				
	energy,solar energy		3 hrs		
	1.Solar Energy Introduction solar		3 hrs		
Unit II	constant, solar radiation	28.03.2022	0 1110		
Content- 15	at the Earth's surface.	to31.03.2022	2 hrs		
Hrs Assessment- 3 hrs	2.Solar energy				
	applications, solar				
Total- 18	cooker design principal,		2 hrs		
Hrs	constructional details				
	and limitations of solar		3 hrs		
	cooker				
	3.Solar water heater,		2 hrs		
	Solar distillation, solar		2 111 5		
	pumping				
	4.Electricity from solar				
	energy, street lighting		3 hrs		
Unit III	1 Wind energy		3 hrs		
	Classification of wind		5 111 5		
Content- 15	mills	19.03.2022			

Hrs	2.Horizontal wind mills,	to	2 hrs	
Assessment-	Vertical wind mills,	28.03.2022		
3 hrs	Advantage and		2 hrs	
Total- 18	disadvantage of wind		3 hrs	
Hrs	energy 3.Fuel cells		2 h	
	introduction, working of		Z nrs	
	fuel cells		3 hrs	
	Advantages of fuel cell			
	1.Bio energy		2 has	
Unit- IV	introduction, Bio gas and		3 nrs	
	it's compositions,	29.04.2022	2 hrs	
Lontent -15 Hrs	process of bio gas	to 06.05.2022	2 hrs	
Assessment	generation			
-3 nrs	2.Wet process and dry			
Total- 18	process, Raw materials		3 hrs	
hrs	available for bio gas			
	fermentation		3 hrs	
	3.Constructional details			
	of bio gas plant,		2 hrs	
	Utilization, KVIC Biogas			
	plant, Advantages and		3 hrs	
	disadvantage of bio gas			
	technology			
Unit V	1.Tidal power plant			
Content-15	introduction,	07.04.2022	3 hrs	
hrs	classification of Tidal	to	2 hrc	
Assessment	power plants	20.04.2022	2 111 5	
– 3 hrs	2.Working of different		2 hrs	
Total – 18	tidal power plants,		3 hrs	
hrs	facttors affecting the		3 hrs	
	suitability of the sitefor		5	
	tidal power plant		2 hrs	
			3 hrs	

D.Activities

Activities Name	Details
Test	Monthly Test- Uni III (Feburary)
Assignment	CIA / Mid Semester – Unit-I ,II(1/2 Unit) & IV (Februry) CIA / Model Examination -Unit-II(second
Quuiz	1/2 Unit), Unit III & Unit-V- 2 ½ Assignment I – Unit I & II (March)
	Two Mark Quiz Test Unit IV & V(March)
Tutorial ward Meeting	Monthly once

¢

R. Don >

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

TEACHING PLAN

A. GENERAL INFORMATION

Name of the Faculty	: Mrs. S. Malathy & A.Rakini
Department	: Chemistry
Programme	: M.Sc., Chemistry
Programme Code	: PSC
Name of the Paper	: PHYSICAL CHEMISTRY PRACTICAL – II
Lecture Hours / Practical Hours	: 6 Hrs / Week / Practical Hours

Course Objectives	Course Outcomes	Practical Methodology
• To develop skills to	• On completion of the	• Students has to be in time for
estimate acids and	Course, Students should be	the laboratory
bases	able to	• Students are not allowed into
byconductometry.	• Understand Conduct	the lab without prepared
• To learn and acquire	metric titrations of: Strong	Observation Note.
ability to estimate ionic	acid Vs. strong base (ii)	• A student has to complete the
species using	Weak acid vs. strong base,	practical and calculations at the
potentiometer.	(iii) Mixture of strong acid	stipulated time give to them.
• To understand the	and (iv)weak acid vs.	• Students have to receive the
concept of electro de	strong base, Strong acid vs.	signature in the observation
potential.	weak base.	note on the same day or on or
	• Develop skills in	before entering the next
	Potentiometric titrations	practical class.
	of: (i) Strong acid vs.	
	strong base (ii) Weak acid	
	vs. strong base.	

Unit / Modules	Topic to be covered	Proposed date	Lecture Hours	Practica l Hours	Remarks
	I-ConductometricTitrations				
	Basic Concepts	22.02.202 2		6 Hrs	_
	Procedure Given		-		
	1.Estimation of strong acids.		-	6 Hrs	
	2.Estimation of mixture of acids 3.Estimation of mixture of bases			6 Hrs	
	1. Estimation of of halides			6 Hrs	
	2. Verification of Ostwald's dilution law			6 Hrs	
	3. Determination of solubility of sparingly soluble salt. EMF MEASUREMENTS	02.03.202 2			
	4. Estimation of KI [KMno4Vs KI]	to 05.05.202 2		6 hrs	
	5. Estimation of KI[K2Cr2O7VsKI]	2		6 hrs	
	6. Estimation of mixture of halides [KCl +KI]			6 hrs	
	7. Estimation of strong acid [NaoHVsHCl]				
	8. Estimation of Acetic acid [NaoHVs CH3COOH]			6 hrs	
	9. Estimation of mixture of acids [NaoHVs HCl + CH3COOH]			6hrs	
	10. Determination of dissociation constant of organic acid.				
	11. Determination of solubility of sparingly soluble salt.			6hrs	
	12. Determination of p ^H of buffer solutions.				

Activities Name	Details
Repetition Class	
Observation Correction	06.05.2021 to 16.05.2022
Record Correction	
Mid Semester	
Model Practical	

¢

R. Don

PRINCIPAL

Principal A.D.M. College For Women Autonemous, Nagapattinam.

TEACHING PLAN

A. GENERAL INFORMATION

Name of the Faculty	: Dr. N. Prabha &Ms.I.Narchonia
Department	: Chemistry
Programme	: M.Sc
Programme Code	: MQE4
Name of the Paper	: Applied Chemistry.
Lecture Hours / Practical Hours	6 Hrs / Week/ Lecture Hours

	Course Objectives		Course Outcomes	Teaching
	To acquire qualitative and	_	Understand have to internet	Methodology
	to acquire quantative and		Understand now to interpret	2 Power point
	quantitative knowledge of the		nuclear magnetic resonance	3. e- Module
	fundamental concepts of		spectrum.	
	variousSpectroscopicmethods.	•	Knowhow to solve problems	
•	To know the basic principles and		based onH1 and C13 NMR	
	applications of UV/V is sectors copy.	•	Knowapplicationsof	
•	Todistinguishbetweenvariousspectro		massspectroscopyindetermin	
	scopictransitionsandinterpretdatafo		ation ofstructures.	
	rmolecularCharacterization.	•	Understandmethodsof	
•	To learn the basic principle of FT-IR,		solvingcombinesproblems	
	NMR sectors copy.		onallspectroscopic techniques	
•	To provide an advanced level in-	•	Explain the basic principle	
	depth understanding about EPR		ofUVVisible spectroscopy	
	spectroscopy.	•	Arrange components of the	
			spectroscopic device.	

Unit /	Topic to be covered	Proposed	Lecture	Practical	Remarks
Modules		date	Hours	Hours	
Content- 15	1.Food Science –		Inr		
Hrs,	Introduction 2.Quality				
Assessment - 3 Hrs	Control Measurements -	21.02.2022	4hrs		
Total - 18 Hrs	Moisture,ash, crude protein,	to			
	fat, crude fibre,	16.03.2022	2hrs		
	carbohydrates, calcium,			-	
	potassium, sodium and		1hr		
	phosphate .				
	3. Food adulteration –		1hr		-
	common adulterants in food.				
	4. Contamination of food		2hrs		
	stuffs.				
	Microscopic examination of		2hrs		
	foods for adulterants.		21110		
			2hrs		
	8.Food standards-				
	ISIandAgmark.				
Unit II	Pretreatment: Sizing,	17.03.2022	1hr		
Lontent- 15 Hrs,	Desizing- acid method,	to 11 04 2022			
Assessment -	Scouring- kier boiling	1110 112022	4hrs		
Total - 18 Hrs	method, Bleaching –				
	hypochlorite method,		2hrs		
	Mercerization, fastness				
	properties washing, rubbing		1hr		
	and light fastness				
	Dyeing: Dye fibre bond, % of		1hr		
	snade, M:L rado, % of				
	absorption effect of		2hrs		
	electrolyte				
	Reactive due - nrinciples of				
	dveing Polvester dves -		2hrs		
	ayenig, i oryester ayes -				

	carrier dyeing - mechanism				
	and high temperature		2hrs		
	dyeing. Mordant dyes –				
	principles – specific				
	examples. Acid dyes-dyeing				
	mechanism, role of				
	electrolyte and dye bath				
	assistants. Vat dyes – vatting				
	- dyeing - oxidation and				
	after treatment				
Unit III	Paint – definitions –	12.04.2022	1hr		
Content- 15 Hrs.	ingredients and their role –	to 25.04.2022	Abro		
Assessment -	terminology – emulsion,		41115 2 hrs		
3 Hrs Total - 18 Hrs	lacquer. Enamel – pot life,		21115		
	shelf life –varnish –		1.6.4		
	thixotropy –classification of		Inr 1h-r		
	paints based on drying				
	mechanism - under coats –		Znrs		
	Pigments – classification		2 hrs		
	(organic & inorganic) –		21115 2hrs		
			21115		
Unit IV	1. Introduction – Recycling	26.04.2022	2hrs		
Content- 15 Hrs	Technique.	to 18 05 2022			
Assessment -	2.Construction materials	10.05.2022	2hrs		
3 Hrs Total - 18 Hrs	from waste – Medicines from				
	agricultural waste .		21		
	3. Liquid fuels from		3hrs	-	_
	agricultural – Urban waste				
	and bagasse for electricity.		2hrs		
	4. Agricultural waste for		2hrs		
	biomass into cheap and		2hrs		
	efficient fuel.				
	5. Bacteria for paper making.		2hrs		
	6.Waste into objects of daily				
	use. Garbage into fuel – How				

	to use garbage to generate			
	power.			
Unit V Content- 15 Hrs, Assessment - 3 Hrs Total - 18 Hrs	 1.Mechanism of drug action and Metabolism of Drugs: Mechanism of action – Drug Receptors and Biological responses. 2.Mechanism of different types of drug action – Metabolism of drugs – Chemical pathway of drug metabolism absorptionof drugs . 3. Routes of administration – factors affect absorption – Digestion and absorption of 	19.05.2022 to 11.06.2022	1hr 4hrs 2hrs 1hr 1hr 2hrs 2hrs 2hrs	
	protein – Digestion of fat.		21115	

Activities Name	Details
Test	Monthly Test- Unit-I (March)
	CIA / Mid Semester – Unit-I ,II (first ½ portion)& III - 2 ½ Unit (April)
	CIA / Model Examination -Unit-II(Second 1/2 Unit) , Unit IV & Unit-V-
	2 ½ Units (June)
	Assignment I –Unit –I (March)
Assignment	Assignment II– Unit–II and Unit–IV (May)
Quiz	Two Mark Quiz Test - Unit I – Unit – V (May)
Cominar	Unit W (Mar
Seminar	Unit -IV (May
Tutorial Ward	Monthly once
Meeting	

"

R. Dom C >

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

Name of the Faculty	: Mrs. S.Malathy& Mrs. A. Rakini
Department	: Chemistry
Programme	:M.Sc
ProgrammeCode	: PGQE5
Name of the Paper	: Recent Trends in
Chemistry Lecture Hours	:6 Hrs / Week /
LectureHours.	

Course Objectives	Course Outcomes	Teaching Methodology
	• After successfully completing	1.Chalk andTalk
• Gain knowledge in Nano	this course, students will be	2.Powerpoint.
Chemistry.	able to	2 a Madula
• Acquire the ideas about	• Provide perspectives on	3.e-Module
material science.	future Nano chemistry	
• Learn about Supra molecular	developments	
chemistry in solutions.	• Follow new developments in	
• Understand basic principles	material application field.	
& reactions in Green	• Explain importance of	
Chemistry.	materials in materials science	
 Study basic knowledge and 	and scientific field.	
resources in chem.	• A functional understanding	
informatics.	of the field of green	
	chemistry.	
	• Chemoinformatics is a rather	
	new discipline in science. It	
	has been described as the	
	application of informatics	
	methods to solve chemical	
	problems.	

Unit III Content -15	SUPRA MOLECULAR		2 hrs.		
Assessment - 3 Hrs.	Supra Molecular Chemistry –		2h		
Total-18 Hrs.	Concepts and Languagesof		3hrs		
	supramolecular Chemistry				
	Supramolecular Reactivity				
	and Catalysis. Catalysis by		2 hrs		
	Reactive Macro		21115	-	-
	cyclicCation				
	ceptorMolecules. Catalysis		3hrs		
	Anion ReceptorMolecules.	25.03.2022			
	Catalysis with Cyclophanes.	to 08.04.2022	2hrs		
	Receptors,Supramolecular				
	Metallocatalysis.Cocatalysis:		3hrs		
	Catalysis of				
	Synthetic reactions.				
	Biomolecular and Abiotic				
	Catalysis.				
Unit IV	GREEN CHEMISTRY				
Content -15	Green Chemistry –		3hrs		
Assessment -	PhotoChemicalPrinciples	27.04.2022			
3 Hrs. Total-18 Hrs	Photo oxidation – photo	to	4hrs		
10tal 101113.	degradation	05.05.2022			
	Hazardous metal ions in water		3hrs		
	Removal of hazardous		2hrs		
	chemicals from water				
	5. cleaner production		3hrs		
	concept – Implementation -				
	Government rule.				
	CHEM-INFORMATICS				
Unit V	Introduction - Evaluation		3hre		
Content- 15	History and uses		5111.5		
Hrs,	nistory and uses -		3hrs		

Assessment -	2.Molecular modeling using			
3 Hrs Total - 18 Hrs	computer –Basicidea Chemical information data ase design and their Management Data base concepts –	06.05.2022 to 24.05.2022	2hrs 3hrs	
	structural languages			
	chemical data basedesign Chemical information sources – chemicalinformationresearc		4hrs	
	hes formulasearching.			

Activities Name	Detail s
Test	Monthly Test- Unit-I & II (March) CIA / Mid Semester – Unit-I ,III (first ½ portion)& Unit-II -
	2 ½ Unit(October)
	CIA / Model Examination -Unit-III(Second 1/2 Unit) , Unit III & Unit-V-
Assignment	2 ½ Units (April)
Quiz Seminar Tutorial Ward Meeting	Assignment I –Unit –I and Unit –II (March) AssignmentII – Unit –III and Unit – IV(April) Two Mark Quiz Test - Unit I to Unit – V (May)
	Unit –V (May)
	Monthlyonce

(

R. Dom

PRINCIPAL

TEACHING PLAN

A. GENERAL INFORMATION

Name of the Faculty	: M.Tamilpriya
Department	: Chemistry
Programme	: M.Sc
Programme Code	: PSC
Name of the Paper	: Analytical Techniques
Lecture Hours / Practical Hours	:6 Hrs / Week/ Lecture Hours

Course Objectives	Course Outcomes	Teaching Methodology			
• To study thermo analytical	• Explain the theoretical aspects of key	Chalk and Talk			
techniques for chemical	analytical techniques and instruments	 Power point. e- Module			
analysis.	CO2: Strategically plan analytical				
• To understand electro	campaigns to apply to different types of				
analytical techniques.	samples and research objectives,	,			
• To learn the nature of	including selection of the most				
errors and their types.	appropriate technique/instrumentation				
• To gain sound knowledge	for the students' research project.				
on methods of crystal	• CO3: Undertake the correct sample				
growth.	preparation and characterization prior				
• To learn diffraction studies	to analysis by the chosen techniques or				
and its applications.	instruments.				
	• CO4: Design an analytical work-flow to	1			
	acquire data				
	• CO5: Process data from the chosen				
	instruments and demonstrate	7			
	understanding of the limitations .				
Unit /	Topic to be covered	Proposed	Lecture	Practical	Remarks
----------------	---------------------------------------	------------	---------	-----------	---------
Modules	m)	date	Hours	Hours	
Unit I	Thermogravimetry		1hr		
Hrs		24.02.2022	4hrs		
Assessment -	thermogram, Instrumentation and	24.02.2022	2 hrs		
3 Hrs	termal decomposition of	14.03.2022	21115		
Total - 18 Hrs	CaC2O4.H2O and CuSO4.5 H2O	17.03.2022	2hrs		
	4.Instrumentation of TGA &DTA				
	5.experimental factors of DTA and		2hrs	-	
	DSC.				
	6.Thermal Studies of CuSO4.5H20		4hrs		_
	by DTA and determination of				
	purity of Pharmaceutical and				
	Phase-transition Studies.by DSC.				
Unit II	1.Electro Analytical Methods.		1hr		
Content- 15	2.Electrogravimetry-Principle				
Assessment -	instrumentation.	15.03.2022	4hrs		
3 Hrs	3.deposition and separation	to			
10101 - 10 115	Electrolysis. 4.Estimation of	50.05.2022			
	copper.				
	5.Coulometry principle, controlled		2hrs		
	potential coulometry .				
	6.separation of nickel and Cobalt			-	-
	7.Coulometric titration.		2hrs		
	8.instrumentation- estimation of				
	sb (lll). 9.Potentiometry principle ,				
	potentiometric titration.		2hrs		
	10. Colorimetry Beer - lambert's				
	law and Spectrphometric method.		2hrs		
	11. Principle & methods of visual				
	colorimetry . 12. Estimation of iron				
	and nickel by Visual Colorimetry.		Zhrs		
Unit III	1. Data analysis.Various type of	04.00.0000	2hrs		
Content- 15		31.03.2022			

Hrs,	errors. 2. Precisionand accuracy	to			
3 Hrs	Significant figures. 3. Positive and	19.04.2022	2hrs		
Total - 18 Hrs	negative deviation from accurate		3hrs		
	results.The binomial distribulation.				
	4.The Gaussian distribution.			-	-
	The normal distribution of random		3hrs		
	- errors, meas Value, Variation and				
	Standard deviation reliability				
	interval , deviation. 5.Student's t		3hrs		
	distribution of T-test & F-Test.		2hrs		
	10.Gross errors and elimination				
	of outlying Results. 6.Graphical				
	methods linear regression.				
	Regression line . Standard				
	deviation. Correlation coefficient				
Unit IV	1.Crystallography.Single Crystal		3hrs		
Content- 15 Hrs	growth. Solution growth technique	27.04.2022 to			
Assessment -	2.Gel and Sol-gel Methods. Melt	09.05.2022			
3 Hrs Total - 18 Hrs	growth - Bridgeman-		3hrs		
	Stock berger Method. 3.Czochralski				
	methods. Flux-lechnique.		3hrs	_	
	Physical and chemical vapour		51115		-
	transport methods.				
	4.Characterization - TGA/DTA/DSC		2 hrs		
	Methods.		51115		
	5. SEM and TEM analysis.		3hrs		
	Determination of hardness.				
	Application of single crystals.				
	1		1	1	1

Unit V	1. Diffraction Studies.	11.05.2022	2hrs
Content- 15	2 X-ray Difftraction - powder and a	to	3hrs
Hrs,	2.X ray Difference of powder and a	19.05.2022	
Assessment -	single crystal Method . 3.		2hrs
3 Hrs	Advantage over neutron		
Total - 18 Hrs	navantage over neutron		
	Diffraction methods .		Znrs
	4. Application of X-ray diffraction		2hrc
	method 5 Neutron diffraction		
	inculou. 5. Neutron unitaction.		3nrs
	6. Advantage over Electron		
	diffraction.		

Activities Name	Details
Test	Monthly Test- Unit-I& II (March)
	CIA / Mid Semester – Unit-I ,II & Unit-III (first ½ portion) - 2 ½
	Unit(March)
	CIA / Model Examination -Unit-III(Second 1/2 Unit) , Unit IV&Unit-V-2
	½ Units(April)
Assignment	Assignment I –Unit –I and Unit –II (March)
	Assignment II – Unit –III and Unit – IV (April)
Quiz	Two Mark Quiz Test - Unit I to Unit – V (May)
Seminar	Unit –V (April)
Tutorial Ward	
Meeting	Monthly once

¢

R. Don C

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

TEACHING PLAN

E. GENERALINFORMATION

Name of the Faculty	: Ms.N.P.RUDRA SHOWDRI
Department	: Chemistry
Programme	: II B.Sc., Zoology
ProgrammeCode	: USZ
Name of the Paper	: Allied
Chemistry	

Lecture Hours / Practical Hours : 5 Hrs / Week

/ Lecture Hours.

F. ABOUT THECOURSE

Course Objectives	Course Outcomes				Teaching Methodology	
• To understand the various	• To	know	about	the	•	Chalk and Talk
theories of coordination chemistry	iden	tification	of	organic	•	PowerPoint.
• To study the natural products and	com	pounds				
polymers	• To g	gain know	ledge in	amino	•	e-Module
• To learn about photochemistry	acid	s, DNA and	RNA			

Unit / Modules	Topic to be covered	Proposed date	Lecture Hours	Practical Hours	Remarks
Unit I	Coordination Chemistry.		1hr		
Contont 15	Nomenclature of	24.02.2022	1 hr		
Una	mononuclear complexes.	То	2hr		
ΠIS,	3. Werner theory. 4. Sidgwick	04.03.2022	3 hr		
Hrs	theory. Pauling's theory.			-	
115	Chelating and its industrial		1hr		
Total - 18 Hrs	importance EDTA.		IIII		
	7. Biological Role of	03.02.2021	3 hr		-

	hemoglobin and Chlorophyll.	to			
	8.Application of complexes in	09.02.2021	1hr		
	quantitative and qualitative				
	analysis.				
Unit II Content- 15 Hrs, Assessment - 3Hrs Total - 18 Hrs	CARBOHYDRATES Glucose and fructose preparation and structure 2.Classification of amino acids 3.Preparation and properties of Essential and non essential	07.03.2022 to 15.03.2022	1hr 1 hr 2hr 3 hr 1hr		
	amino acids .Biological functions of peptides		4 hr		
	Biological functions of proteins DNA RNA.		1hr		
Unit III Content- 15 Hrs, Assessment -3 Hrs Total - 18 Hrs	Synthetic polymers. Teflon, alkyd and epoxy resins & poly estas - general treatment Only. Heterocyclic Compounds. Furan, thiophene - preparation and properties. pyrrole , Pyridine - Preparation and properties .	17.03.202 to 21.03.2022	1 1hr 1 hr 2hr 3 hr 1hr 5 hr 1hr	-	-
Unit -IV Content- 15 Hrs, Assessment -3 Hrs	 1.Surface chemistry 2.Colloids,Emulsions, gels- Preparation properties and applications. 3.Electrophoresis. 4.Chromatography 5.Column, paper 	22.3.2022 to 28.3.2022	1hr 1hr 1hr 1hr		

Total - 18 Hrs	Chromatography. 6.Thin layer chromatography. 7.Photochemistry 8.Law of photo chemistry applications.			
Unit V Content- 15 Hrs, Assessment - 3Hrs Total - 18 Hrs	 1.Identification of organic compounds 2. Importance of pH 3.Importance of buffer in living systems 4. pH determination by colorimetric method 	05.5.2022 to 18.5.2022	1hr 1 hr 2hr 3 hr 1h 3hrs 1hr	

Activities Name	Details				
Test	Monthly Test- Unit-I & IV (March)				
	CIA / Mid Semester – Unit-I ,II (first ½ portion)& Unit-IV -				
	2 ½ Unit(April)				
	CIA / Model Examination -Unit-II(Second 1/2 Unit) , Unit III & Unit-V-				
	2 ½ Units (May)				
Assignment	Assignment I –Unit –I and Unit –II (March) AssignmentII – Unit –III and Unit – IV(April)				
Quiz	Two Mark Quiz Test - Unit I to Unit – V (April)				
Seminar	Unit –V (Mav)				
Tutorial Ward Meeting	Monthly once				

(

R. Don >

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

A. GENERAL INFORMATION

Name of the Faculty	: M.Sivagamasundari
Department	: Chemistry
Programme	: II B.Sc Physics
Programme Code	: USP
Name of the Paper	: Allied Chemistry
Lecture Hours / Practical Hours	:90 Hrs

B. ABOUT THE COURSE

Course Objectives	Course Outcomes	Teaching Methodology
• To understand the various	• To give an idea about the	Chalk and Talk
theories of coordination chemistry	biological function	• Power point.
• To study the natural products and	importance of hemoglobin	• e- Module
polymers	and chlorophyll	
• To learn about chromatography	• To understand the	
	reactions of heterocyclic	
	compounds	
	• To know the separation	
	techniques like	
	chromatography	
	• To identify the organic	
	compounds.	

Unit /	Topic to be covered	Proposed	Lecture	Practical	Remarks
Modules		date	Hours	Hours	
Unit I	Coordination Chemistry.		2hrs		
Content- 15 Hrs, Assessment - 3 Hrs Total - 18 Hrs	2.Nomenclature of mononuclear complexes.	02.3.2022 to 18.03.2022	2 hrs		
	3. Werner theory.				

	4. Sidgwick theory.		2hrs	-	
	5. Pauling's theory.				
	6.Chelation and its		2hrs		
	industrial importance				-
	ef EDTA.		2hrs		
	7. Biological Role of				
	hemoglobin and		2hrs		
	Chlorophyll.				
	8.Application of complexes		2hrs		
	in				
	quantitative and				
	qualitative analysis.		1hrs		
Unit II			3hrs		
Content- 15 Hrs	1.Synthetic polymers.	19.03.2022 to	2hrs		
Assessment -	resins &	02.04.2022			
3 Hrs Total - 18 Hrs	poly estas - general		3hrs		
	treatment Only.		3hrs		
	3. Heterocyclic				
	4.Furan, thiophene -		2hrs		
	preparation and				
	properties.		2hrs		
	Preparation and				
	properties .				
Unit-III	Identification of Organic	05 04 2022	4hrs		
Hrs,	Compounds - Phenol,	to	3hrs		
Assessment -	Carbohydrate, Amine,	29.04.2022	51115		
Total - 18 Hrs	Amide,				
	Aldehyde, Ketone and		4hrs		
	Carboxylic acid.				
	5.2 pH and Buffer -				
	Importance of pH and		4hrs		
	buffers in living systems -				
	pH determination by				
	colorimetric and				

	electrometric methods.			
Unit- IV Content- 15 Hrs, Assessment - 3 Hrs Total - 18 Hrs	1. Ionic Equilibria in aqueous solution ,Acids and bases, Arrhenius	05.05.2022 to 18.05.2022	2hrs 3hrs	
	theory, Lowry – Bronsted concept, lewis concept		2hrs	
	weak acids and bases,		1hr	
	dissociation constant, Hydrolysis – buffer		2hrs	
	- acid base indicators		2hrs	
	complex ion equilibria.		1hr	
	prevention		2hrs	
Unit -V	1.Surface chemistry		3hrs	
Content- 15 Hrs, Assessment -	2.Colloids,Emulsions, gels- Preparation	29.04.2022	2hrs	
3 Hrs Total - 18 Hrs	properties and applications.	to 0505.2022	3hrs	
	3.Electrophoresis. 4.Chromatography		4hrs	
	5.Column, paper		3hrs	
	Chromatography.			
	6.Thin layer			
	chromatography.			
	7.Photochemistry			
	8.Law of photo chemistry			
	applications.			

Activities Name	Details
Test	Monthly Test- Unit-I (Janurary)
	CIA / Mid Semester – Unit-I ,II - 2 Unit (Feburary)
	CIA / Model Examination -Unit-III , Unit IV & Unit-V- 3Units (March)
Assignment	Assignment I –Unit –I& II (Feburary) Assignment II– Unit –III to Unit – V (March)
Quiz	Two Mark Quiz Test - Unit I – Unit – V (March)
Seminar	Unit –V (March)
Tutorial Ward	Monthly once
Meeting	

(

R. Don

PRINCIPAL

Principal A.D.M. College For Women Autonemous, Nagapattinam.

TEACHING PLAN

A. GENERAL INFORMATION

Name of the Faculty	: M.Tamilpriya
Department	: Chemistry
Programme	:B.Sc - Allied (Bio Chemistry & Geology)
Programme Code	:USC
Name of the Paper	: Allied Chemistry
Lecture Hours / Practical Hours	: 60 Hrs

Course Objectives			Course Outcomes	7	Seaching Methodology
•	To understand the various	•	1. Give an idea about the	•	Chalk and Talk
	theories of coordination		biological function	•	Power point.
	chemistry		importance of	•	e- Module
•	To learn about carbohydrates		hemoglobin and		
	and proteins		chlorophyll.		
•	To Study the natural products	•	Understand the biological		
	and polymers		functions of proteins		
•	To Learn about	•	Understand the reactions		
	Chromatography		of heterocyclic		
•	To know about the importance		compounds		
	of pH and buffer	•	Know the separation		
			techniques like		
			chromatography		
		•	To identify the organic		
			compounds.		

Unit /	Topic to be covered	Proposed	Lecture	Practical	Remarks
Modules		date	Hours	Hours	
Unit – I	Coordination Chemistry		3hrs		
Content – 9	1.Nomenclature of				
Assessment-3	mononuclear complexes	24.02.2022	2hrs		
Hrs	Werner, Sidgwick, and	to			
Total- 12 Hrs	Pauling's theories.	15.03.2022	2hrs		
	2.Chelation and its				
	industrial importance		2hrs		
TT ·· TT	2 EDTA Biological role of		11		
Unit – II Contont – 0	Carbonydrates		Inr		
Hrs	1.Classification- glucose				
Assessment-3	and fructose preparation				
Hrs	elucidation of structure of	17.03.2022			
Total- 12 Hrs	glucose	to	2hrs		
	2.Amino acids and protein	30.03.2022			
	Amino acids classification				
	based on structure				
	essential and non essential		2hrs		
	amino acids				
	3.preparation and				
	properties peptides		2hrs		
	(elementary treatment)				
	proteins 4.classification				
	based on physical		2hrs		
	properties and biological				
	functions. 5.Structures of				
	proteins primary and				
	secondary (elementary				
	treatment). DNA and RNA.				
Unit – III	Synthetic Polymers		3hrs		
Content – 9 Hrs	1.Teflon, alkyd and epoxy				
Assessment-3	resins, poly esters –	31.03.2022			

Hrs	general treatment only.	to		
Total- 12 Hrs	2.Heterocyclic Compounds	13.04.2022	3hrs	
	Furan and thiophene			
	preparation and			
	properties. 3.pyrrole and			
	pyridine preparation and		3hrs	
	properties.			
Unit – IV	Surface Chemistry	27.04.2022	3hrs	
Content – 9	1.Colloids, Emulsions, gels-	to		
Assessment-3	preparation, properties	05.05.2022		
Hrs	and applications.			
Total- 12 Hrs	2.Electrophoresis,			
	chromatography- column,		3hrs	
	paper and thin layer			
	chromatography			
	3.Photochemistry Laws of			
	photochemistry and			
	applications.		3hrs	
Unit – V	1.Identification of Organic	06.05.2022	3hrs	
Content – 9 Hrs	Compounds - Phenol,	to		
Assessment-3	Carbohydrate, Amine,	17.05.2022		
Hrs	Amide, Aldehyde, Ketone			
Total- 12 Hrs	and Carboxylic acid.			
	2.pH and Buffer -			
	Importance of pH and		3hrs	
	buffers in living systems			
	3. pH determination by			
	colorimetric and			
	electrometric methods.		3hrs	

Activities Name	Details			
Test	Monthly Test- Unit-I& II (March)			
	CIA / Mid Semester – Unit-I ,II & Unit-III (first ½ portion) - 2 ½			
	Unit(March)			
	CIA / Model Examination -Unit-III(Second 1/2 Unit) , Unit IV&Unit-V- 2			
	½ Units(April)			
Assignment	Assignment I –Unit –I and Unit –II (March)			
	Assignment II – Unit –III and Unit – IV (April)			
Quiz	Two Mark Quiz Test - Unit I to Unit – V (May)			
Seminar	Unit –V (April)			
Tutorial Ward	Monthly once			
Meeting				

"

R. Dom

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

A. GENERAL INFORMATION

Name of the Faculty	: R.MAHESWARI
Department	: Chemistry
Programme	: II B.Sc.,
Programme Code	: USC
Name of the Paper	: Allied Chemistry Practical Zoology
Lecture Hours / Practical Hours	: 2Hrs / Week / Practical Hours

Course Objectives	Course Outcomes	Practical Methodology
• To perform the qualitative analysis of a given organic mixture	 To provide training on volumetric analysis To acquire knowledge about organic compounds 	 Students has to be in time for the laboratory Students are not allowed into the lab without prepared Observation Note. A student has to complete the practical and calculations at the stipulated time give to them. Students have to receive the signature in the observation note on the same day or on or before entering the next practical class.

Topic to be covered	Proposed	Lecture	Practical Hours	Remarks
Volumetric Analysis – Basic	4.3.2022	110ul S	3 Hrs	
Concepts		_		
Volumetric Analysis -			3Hrs	
Concentrations Units				
Procedure Given			3hrs	
Estimation of Hydrochloric acid	14.3.2022 to		3Hrs	
Estimation of Sodium Hydroxide	7.4.2022	-	3Hrs	
Estimation of Oxalic acid			3Hrs	-
Estimation of Ferrous ion	27.4.2022 to		3Hrs	
Estimation of Copper Sulphate	0.5.2022	-	3Hrs	
Estimation of Potassium			3Hrs	
permanganate	7 5 2022 4		2 h	
principles.	7.5.2022 to 17.5.2022		3 hrs	
Organic Analysis – I			3hrs	
Organic Analysis – II			3hrs	
Organic Analysis – III			3hrs	
Organic Analysis – IV			3hrs	
Organic Analysis – V			3hrs	
Organic Analysis – VI			3hrs	
Organic Analysis –VII			3hrs	

ACTIVITIES:

Activities Name	Details
Repetition Class	
Observation Correction	4.3.2022 to 17.5.2022
Record Correction	
Mid Semester	
Model Practical	

"

R. Dom >

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.

TEACHING PLAN

A. GENERAL INFORMATION

Name of the Faculty	:Mrs.M.Sivagamasundari
Department	: Chemistry
Programme	: B.Sc
Programme Code	: USC
Name of the Paper	: Allied Chemistry Practical (Physics)
Lecture Hours / Practical Hours	: 2Hrs / Week / Practical Hours

Course Objectives	Course Outcomes	Practical Methodology
		 Students has to be in time for the laboratory Students are not allowed into the lab without prepared Observation Note. A student has to complete the practical and calculations at the stipulated time give to them. Students have to receive the signature in the observation note on the same day or on or before entering the next practical class.

Unit /	Topic to be covered	Proposed	Lecture	Practica	Remarks
Modules		date	Hours	l Hours	
-	Volumetric Analysis – Basic			2 Hrs	
	Concepts	12.08.2021			
		to			
	Volumetric Analysis -	19.08.2021		2Hrs	-
	Concentrations Units		-		
	Procedure Given	06.09.2021			
	Estimation of Hydrochloric acid	to 27.10.2021	-	2hrs	
	Estimation of Sodium Hydroxide	2/11012021			
	Estimation of Oxalic acid			2hrs	
	Estimation of Ferrous ion	09.11.2021 to		2hrs	
	Estimation of Copper Sulphate	02.12.2021			
	Estimation of Potassium			2hrs	
	Organic Analysis - Basic	-			
	nrincinles	28 02 2021		2hrs	
	principies.	to		21115	
	Organic Analysis – I	20.04.2021			
				2hrs	
	Organic Analysis – II				
	Organic Analysis – III			2hrs	
	Organic Analysis – IV				
	Organic Analysis – V				
	Organic Analysis – VI				
	Organic Analysis –VII				

Activities Name	Details
Repetition Class	
Observation Correction	01.03.2021 to 13.03.2021
Record Correction	
Mid Semester	
Model Practical	

C

R. Don 0

PRINCIPAL

Principal A.D.M. College For Women Autonemous, Nagapattinam.

TEACHING PLAN				
A. GENERAL INFORMATION Name of the Faculty	: Mrs. A. Rakini			
Department	: Chemistry			
Programme	: B.Sc			
Programme Code	: QUA2Y			
Name of the Paper	:Allied Chemistry Practical (Biochemistry & Geology)			
Lecture Hours / Practical Hours	: Even- 3 Hrs / Week / Practical Hours			

	Course Objectives			Course Outcomes			Practical Methodology			
•	То	perform	the	•	То	provide	training	on	•	Students has to be in time for
	quali	itative analysi	is of a		vol	umetric a	nalysis			the laboratory
	giver	n organic mixt	ture	•	То	acquire	knowle	edge	•	Students are not allowed into
					abo	out organi	c compou	nds		the lab without prepared
										Observation Note.
									•	A student has to complete the
										practical and calculations at
					the stipulated time		the stipulated time give to			
										them.
									•	Students have to receive the
										signature in the observation
										note on the same day or on or
										before entering the next
										practical class.

Unit / Modules	Topic to be covered	Proposed date	Lecture Hours	Practica 1 Hours	Remarks
	Volumetric Analysis – Basic	uate	nours	2 Hrs	
	Concents	12 08 202		2 1113	
	Concepts	12.00.202			
	Volumetric Analysis -	to		2Hrs	
	Concentrations Units	10 00 202		21115	
	Concentrations onnes	10.00.202			
	Procedure Given	1		2hrs	
	Estimation of Hydrochloric acid			2Hrs	
		06 09 202		21110	
	Estimation of Sodium	1 to	-	2Hrs	
	Hydroxide	02 11 202		21110	-
	ilyaromae	1		2Hrs	
	Estimation of Oxalic acid	-		21110	
	Estimation of Ferrous ion	09.11.202		2Hrs	
		1 to			
	Estimation of Copper Sulphate	02.12.202	-	2Hrs	
		1		_	
	Estimation of Potassium			2Hrs	
	permanganate				
	Organic Analysis – Basic	28.02.202		3hrs	
	principles.	2 to			
		20.04.202			
	Organic Analysis – I	2		3 hrs	
	Organic Analysis – II			3 hrs	
	Organic Analysis – III			3 hrs	
	Organic Analysis – IV			3 hrs	
	Organic Analysis – V			3 hrs	
	Organic Analysis – VI			3 hrs	
				0.1	
	Urganic Analysis –VII			3 hrs	

Details
21.04.2022 to 16.05.2022

¢

R. Dom 1 >

PRINCIPAL

Principal A.D.M. College For Women Autonomous, Nagapattinam.